![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nrmreg | Structured version Visualization version GIF version |
Description: A normal T1 space is regular Hausdorff. In other words, a T4 space is T3 . One can get away with slightly weaker assumptions; see nrmr0reg 21775. (Contributed by Mario Carneiro, 25-Aug-2015.) |
Ref | Expression |
---|---|
nrmreg | ⊢ ((𝐽 ∈ Nrm ∧ 𝐽 ∈ Fre) → 𝐽 ∈ Reg) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | t1r0 21847 | . 2 ⊢ (𝐽 ∈ Fre → (KQ‘𝐽) ∈ Fre) | |
2 | nrmr0reg 21775 | . 2 ⊢ ((𝐽 ∈ Nrm ∧ (KQ‘𝐽) ∈ Fre) → 𝐽 ∈ Reg) | |
3 | 1, 2 | sylan2 492 | 1 ⊢ ((𝐽 ∈ Nrm ∧ 𝐽 ∈ Fre) → 𝐽 ∈ Reg) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∈ wcel 2140 ‘cfv 6050 Frect1 21334 Regcreg 21336 Nrmcnrm 21337 KQckq 21719 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-rep 4924 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-ral 3056 df-rex 3057 df-reu 3058 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-op 4329 df-uni 4590 df-iun 4675 df-br 4806 df-opab 4866 df-mpt 4883 df-id 5175 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-suc 5891 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-ov 6818 df-oprab 6819 df-mpt2 6820 df-1st 7335 df-2nd 7336 df-1o 7731 df-map 8028 df-topgen 16327 df-qtop 16390 df-top 20922 df-topon 20939 df-cld 21046 df-cn 21254 df-t0 21340 df-t1 21341 df-reg 21343 df-nrm 21344 df-kq 21720 df-hmeo 21781 df-hmph 21782 |
This theorem is referenced by: nrmhaus 21852 metreg 22888 |
Copyright terms: Public domain | W3C validator |