MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nrginvrcn Structured version   Visualization version   GIF version

Theorem nrginvrcn 22717
Description: The ring inverse function is continuous in a normed ring. (Note that this is true even in rings which are not division rings.) (Contributed by Mario Carneiro, 6-Oct-2015.)
Hypotheses
Ref Expression
nrginvrcn.x 𝑋 = (Base‘𝑅)
nrginvrcn.u 𝑈 = (Unit‘𝑅)
nrginvrcn.i 𝐼 = (invr𝑅)
nrginvrcn.j 𝐽 = (TopOpen‘𝑅)
Assertion
Ref Expression
nrginvrcn (𝑅 ∈ NrmRing → 𝐼 ∈ ((𝐽t 𝑈) Cn (𝐽t 𝑈)))

Proof of Theorem nrginvrcn
Dummy variables 𝑠 𝑟 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nrgring 22688 . . . 4 (𝑅 ∈ NrmRing → 𝑅 ∈ Ring)
2 nrginvrcn.u . . . . 5 𝑈 = (Unit‘𝑅)
3 eqid 2760 . . . . 5 ((mulGrp‘𝑅) ↾s 𝑈) = ((mulGrp‘𝑅) ↾s 𝑈)
42, 3unitgrp 18887 . . . 4 (𝑅 ∈ Ring → ((mulGrp‘𝑅) ↾s 𝑈) ∈ Grp)
52, 3unitgrpbas 18886 . . . . 5 𝑈 = (Base‘((mulGrp‘𝑅) ↾s 𝑈))
6 nrginvrcn.i . . . . . 6 𝐼 = (invr𝑅)
72, 3, 6invrfval 18893 . . . . 5 𝐼 = (invg‘((mulGrp‘𝑅) ↾s 𝑈))
85, 7grpinvf 17687 . . . 4 (((mulGrp‘𝑅) ↾s 𝑈) ∈ Grp → 𝐼:𝑈𝑈)
91, 4, 83syl 18 . . 3 (𝑅 ∈ NrmRing → 𝐼:𝑈𝑈)
10 1rp 12049 . . . . . . . 8 1 ∈ ℝ+
1110ne0ii 4066 . . . . . . 7 + ≠ ∅
121ad2antrr 764 . . . . . . . . . . . . . 14 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → 𝑅 ∈ Ring)
13 nrginvrcn.x . . . . . . . . . . . . . . . 16 𝑋 = (Base‘𝑅)
1413, 2unitss 18880 . . . . . . . . . . . . . . 15 𝑈𝑋
15 simplrl 819 . . . . . . . . . . . . . . 15 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → 𝑥𝑈)
1614, 15sseldi 3742 . . . . . . . . . . . . . 14 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → 𝑥𝑋)
17 simpr 479 . . . . . . . . . . . . . . 15 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → 𝑦𝑈)
1814, 17sseldi 3742 . . . . . . . . . . . . . 14 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → 𝑦𝑋)
19 eqid 2760 . . . . . . . . . . . . . . 15 (1r𝑅) = (1r𝑅)
20 eqid 2760 . . . . . . . . . . . . . . 15 (0g𝑅) = (0g𝑅)
2113, 19, 20ring1eq0 18810 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 𝑥𝑋𝑦𝑋) → ((1r𝑅) = (0g𝑅) → 𝑥 = 𝑦))
2212, 16, 18, 21syl3anc 1477 . . . . . . . . . . . . 13 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → ((1r𝑅) = (0g𝑅) → 𝑥 = 𝑦))
23 eqid 2760 . . . . . . . . . . . . . . . 16 (𝐼𝑦) = (𝐼𝑦)
24 nrgngp 22687 . . . . . . . . . . . . . . . . . . 19 (𝑅 ∈ NrmRing → 𝑅 ∈ NrmGrp)
25 ngpms 22625 . . . . . . . . . . . . . . . . . . 19 (𝑅 ∈ NrmGrp → 𝑅 ∈ MetSp)
26 msxms 22480 . . . . . . . . . . . . . . . . . . 19 (𝑅 ∈ MetSp → 𝑅 ∈ ∞MetSp)
2724, 25, 263syl 18 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ NrmRing → 𝑅 ∈ ∞MetSp)
2827ad2antrr 764 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → 𝑅 ∈ ∞MetSp)
299adantr 472 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) → 𝐼:𝑈𝑈)
3029ffvelrnda 6523 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → (𝐼𝑦) ∈ 𝑈)
3114, 30sseldi 3742 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → (𝐼𝑦) ∈ 𝑋)
32 eqid 2760 . . . . . . . . . . . . . . . . . 18 (dist‘𝑅) = (dist‘𝑅)
3313, 32xmseq0 22490 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ∞MetSp ∧ (𝐼𝑦) ∈ 𝑋 ∧ (𝐼𝑦) ∈ 𝑋) → (((𝐼𝑦)(dist‘𝑅)(𝐼𝑦)) = 0 ↔ (𝐼𝑦) = (𝐼𝑦)))
3428, 31, 31, 33syl3anc 1477 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → (((𝐼𝑦)(dist‘𝑅)(𝐼𝑦)) = 0 ↔ (𝐼𝑦) = (𝐼𝑦)))
3523, 34mpbiri 248 . . . . . . . . . . . . . . 15 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → ((𝐼𝑦)(dist‘𝑅)(𝐼𝑦)) = 0)
36 simplrr 820 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → 𝑟 ∈ ℝ+)
3736rpgt0d 12088 . . . . . . . . . . . . . . 15 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → 0 < 𝑟)
3835, 37eqbrtrd 4826 . . . . . . . . . . . . . 14 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → ((𝐼𝑦)(dist‘𝑅)(𝐼𝑦)) < 𝑟)
39 fveq2 6353 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → (𝐼𝑥) = (𝐼𝑦))
4039oveq1d 6829 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → ((𝐼𝑥)(dist‘𝑅)(𝐼𝑦)) = ((𝐼𝑦)(dist‘𝑅)(𝐼𝑦)))
4140breq1d 4814 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (((𝐼𝑥)(dist‘𝑅)(𝐼𝑦)) < 𝑟 ↔ ((𝐼𝑦)(dist‘𝑅)(𝐼𝑦)) < 𝑟))
4238, 41syl5ibrcom 237 . . . . . . . . . . . . 13 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → (𝑥 = 𝑦 → ((𝐼𝑥)(dist‘𝑅)(𝐼𝑦)) < 𝑟))
4322, 42syld 47 . . . . . . . . . . . 12 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → ((1r𝑅) = (0g𝑅) → ((𝐼𝑥)(dist‘𝑅)(𝐼𝑦)) < 𝑟))
4443imp 444 . . . . . . . . . . 11 ((((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) ∧ (1r𝑅) = (0g𝑅)) → ((𝐼𝑥)(dist‘𝑅)(𝐼𝑦)) < 𝑟)
4544an32s 881 . . . . . . . . . 10 ((((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ (1r𝑅) = (0g𝑅)) ∧ 𝑦𝑈) → ((𝐼𝑥)(dist‘𝑅)(𝐼𝑦)) < 𝑟)
4645a1d 25 . . . . . . . . 9 ((((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ (1r𝑅) = (0g𝑅)) ∧ 𝑦𝑈) → ((𝑥(dist‘𝑅)𝑦) < 𝑠 → ((𝐼𝑥)(dist‘𝑅)(𝐼𝑦)) < 𝑟))
4746ralrimiva 3104 . . . . . . . 8 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ (1r𝑅) = (0g𝑅)) → ∀𝑦𝑈 ((𝑥(dist‘𝑅)𝑦) < 𝑠 → ((𝐼𝑥)(dist‘𝑅)(𝐼𝑦)) < 𝑟))
4847ralrimivw 3105 . . . . . . 7 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ (1r𝑅) = (0g𝑅)) → ∀𝑠 ∈ ℝ+𝑦𝑈 ((𝑥(dist‘𝑅)𝑦) < 𝑠 → ((𝐼𝑥)(dist‘𝑅)(𝐼𝑦)) < 𝑟))
49 r19.2z 4204 . . . . . . 7 ((ℝ+ ≠ ∅ ∧ ∀𝑠 ∈ ℝ+𝑦𝑈 ((𝑥(dist‘𝑅)𝑦) < 𝑠 → ((𝐼𝑥)(dist‘𝑅)(𝐼𝑦)) < 𝑟)) → ∃𝑠 ∈ ℝ+𝑦𝑈 ((𝑥(dist‘𝑅)𝑦) < 𝑠 → ((𝐼𝑥)(dist‘𝑅)(𝐼𝑦)) < 𝑟))
5011, 48, 49sylancr 698 . . . . . 6 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ (1r𝑅) = (0g𝑅)) → ∃𝑠 ∈ ℝ+𝑦𝑈 ((𝑥(dist‘𝑅)𝑦) < 𝑠 → ((𝐼𝑥)(dist‘𝑅)(𝐼𝑦)) < 𝑟))
51 eqid 2760 . . . . . . 7 (norm‘𝑅) = (norm‘𝑅)
52 simpll 807 . . . . . . 7 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ (1r𝑅) ≠ (0g𝑅)) → 𝑅 ∈ NrmRing)
531ad2antrr 764 . . . . . . . 8 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ (1r𝑅) ≠ (0g𝑅)) → 𝑅 ∈ Ring)
54 simpr 479 . . . . . . . 8 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ (1r𝑅) ≠ (0g𝑅)) → (1r𝑅) ≠ (0g𝑅))
5519, 20isnzr 19481 . . . . . . . 8 (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ (1r𝑅) ≠ (0g𝑅)))
5653, 54, 55sylanbrc 701 . . . . . . 7 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ (1r𝑅) ≠ (0g𝑅)) → 𝑅 ∈ NzRing)
57 simplrl 819 . . . . . . 7 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ (1r𝑅) ≠ (0g𝑅)) → 𝑥𝑈)
58 simplrr 820 . . . . . . 7 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ (1r𝑅) ≠ (0g𝑅)) → 𝑟 ∈ ℝ+)
59 eqid 2760 . . . . . . 7 (if(1 ≤ (((norm‘𝑅)‘𝑥) · 𝑟), 1, (((norm‘𝑅)‘𝑥) · 𝑟)) · (((norm‘𝑅)‘𝑥) / 2)) = (if(1 ≤ (((norm‘𝑅)‘𝑥) · 𝑟), 1, (((norm‘𝑅)‘𝑥) · 𝑟)) · (((norm‘𝑅)‘𝑥) / 2))
6013, 2, 6, 51, 32, 52, 56, 57, 58, 59nrginvrcnlem 22716 . . . . . 6 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ (1r𝑅) ≠ (0g𝑅)) → ∃𝑠 ∈ ℝ+𝑦𝑈 ((𝑥(dist‘𝑅)𝑦) < 𝑠 → ((𝐼𝑥)(dist‘𝑅)(𝐼𝑦)) < 𝑟))
6150, 60pm2.61dane 3019 . . . . 5 ((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) → ∃𝑠 ∈ ℝ+𝑦𝑈 ((𝑥(dist‘𝑅)𝑦) < 𝑠 → ((𝐼𝑥)(dist‘𝑅)(𝐼𝑦)) < 𝑟))
6215, 17ovresd 6967 . . . . . . . . 9 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → (𝑥((dist‘𝑅) ↾ (𝑈 × 𝑈))𝑦) = (𝑥(dist‘𝑅)𝑦))
6362breq1d 4814 . . . . . . . 8 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → ((𝑥((dist‘𝑅) ↾ (𝑈 × 𝑈))𝑦) < 𝑠 ↔ (𝑥(dist‘𝑅)𝑦) < 𝑠))
64 simpl 474 . . . . . . . . . . . 12 ((𝑥𝑈𝑟 ∈ ℝ+) → 𝑥𝑈)
65 ffvelrn 6521 . . . . . . . . . . . 12 ((𝐼:𝑈𝑈𝑥𝑈) → (𝐼𝑥) ∈ 𝑈)
669, 64, 65syl2an 495 . . . . . . . . . . 11 ((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) → (𝐼𝑥) ∈ 𝑈)
6766adantr 472 . . . . . . . . . 10 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → (𝐼𝑥) ∈ 𝑈)
6867, 30ovresd 6967 . . . . . . . . 9 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → ((𝐼𝑥)((dist‘𝑅) ↾ (𝑈 × 𝑈))(𝐼𝑦)) = ((𝐼𝑥)(dist‘𝑅)(𝐼𝑦)))
6968breq1d 4814 . . . . . . . 8 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → (((𝐼𝑥)((dist‘𝑅) ↾ (𝑈 × 𝑈))(𝐼𝑦)) < 𝑟 ↔ ((𝐼𝑥)(dist‘𝑅)(𝐼𝑦)) < 𝑟))
7063, 69imbi12d 333 . . . . . . 7 (((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) ∧ 𝑦𝑈) → (((𝑥((dist‘𝑅) ↾ (𝑈 × 𝑈))𝑦) < 𝑠 → ((𝐼𝑥)((dist‘𝑅) ↾ (𝑈 × 𝑈))(𝐼𝑦)) < 𝑟) ↔ ((𝑥(dist‘𝑅)𝑦) < 𝑠 → ((𝐼𝑥)(dist‘𝑅)(𝐼𝑦)) < 𝑟)))
7170ralbidva 3123 . . . . . 6 ((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) → (∀𝑦𝑈 ((𝑥((dist‘𝑅) ↾ (𝑈 × 𝑈))𝑦) < 𝑠 → ((𝐼𝑥)((dist‘𝑅) ↾ (𝑈 × 𝑈))(𝐼𝑦)) < 𝑟) ↔ ∀𝑦𝑈 ((𝑥(dist‘𝑅)𝑦) < 𝑠 → ((𝐼𝑥)(dist‘𝑅)(𝐼𝑦)) < 𝑟)))
7271rexbidv 3190 . . . . 5 ((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) → (∃𝑠 ∈ ℝ+𝑦𝑈 ((𝑥((dist‘𝑅) ↾ (𝑈 × 𝑈))𝑦) < 𝑠 → ((𝐼𝑥)((dist‘𝑅) ↾ (𝑈 × 𝑈))(𝐼𝑦)) < 𝑟) ↔ ∃𝑠 ∈ ℝ+𝑦𝑈 ((𝑥(dist‘𝑅)𝑦) < 𝑠 → ((𝐼𝑥)(dist‘𝑅)(𝐼𝑦)) < 𝑟)))
7361, 72mpbird 247 . . . 4 ((𝑅 ∈ NrmRing ∧ (𝑥𝑈𝑟 ∈ ℝ+)) → ∃𝑠 ∈ ℝ+𝑦𝑈 ((𝑥((dist‘𝑅) ↾ (𝑈 × 𝑈))𝑦) < 𝑠 → ((𝐼𝑥)((dist‘𝑅) ↾ (𝑈 × 𝑈))(𝐼𝑦)) < 𝑟))
7473ralrimivva 3109 . . 3 (𝑅 ∈ NrmRing → ∀𝑥𝑈𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑦𝑈 ((𝑥((dist‘𝑅) ↾ (𝑈 × 𝑈))𝑦) < 𝑠 → ((𝐼𝑥)((dist‘𝑅) ↾ (𝑈 × 𝑈))(𝐼𝑦)) < 𝑟))
75 xpss12 5281 . . . . . . 7 ((𝑈𝑋𝑈𝑋) → (𝑈 × 𝑈) ⊆ (𝑋 × 𝑋))
7614, 14, 75mp2an 710 . . . . . 6 (𝑈 × 𝑈) ⊆ (𝑋 × 𝑋)
77 resabs1 5585 . . . . . 6 ((𝑈 × 𝑈) ⊆ (𝑋 × 𝑋) → (((dist‘𝑅) ↾ (𝑋 × 𝑋)) ↾ (𝑈 × 𝑈)) = ((dist‘𝑅) ↾ (𝑈 × 𝑈)))
7876, 77ax-mp 5 . . . . 5 (((dist‘𝑅) ↾ (𝑋 × 𝑋)) ↾ (𝑈 × 𝑈)) = ((dist‘𝑅) ↾ (𝑈 × 𝑈))
79 eqid 2760 . . . . . . . 8 ((dist‘𝑅) ↾ (𝑋 × 𝑋)) = ((dist‘𝑅) ↾ (𝑋 × 𝑋))
8013, 79xmsxmet 22482 . . . . . . 7 (𝑅 ∈ ∞MetSp → ((dist‘𝑅) ↾ (𝑋 × 𝑋)) ∈ (∞Met‘𝑋))
8124, 25, 26, 804syl 19 . . . . . 6 (𝑅 ∈ NrmRing → ((dist‘𝑅) ↾ (𝑋 × 𝑋)) ∈ (∞Met‘𝑋))
82 xmetres2 22387 . . . . . 6 ((((dist‘𝑅) ↾ (𝑋 × 𝑋)) ∈ (∞Met‘𝑋) ∧ 𝑈𝑋) → (((dist‘𝑅) ↾ (𝑋 × 𝑋)) ↾ (𝑈 × 𝑈)) ∈ (∞Met‘𝑈))
8381, 14, 82sylancl 697 . . . . 5 (𝑅 ∈ NrmRing → (((dist‘𝑅) ↾ (𝑋 × 𝑋)) ↾ (𝑈 × 𝑈)) ∈ (∞Met‘𝑈))
8478, 83syl5eqelr 2844 . . . 4 (𝑅 ∈ NrmRing → ((dist‘𝑅) ↾ (𝑈 × 𝑈)) ∈ (∞Met‘𝑈))
85 eqid 2760 . . . . 5 (MetOpen‘((dist‘𝑅) ↾ (𝑈 × 𝑈))) = (MetOpen‘((dist‘𝑅) ↾ (𝑈 × 𝑈)))
8685, 85metcn 22569 . . . 4 ((((dist‘𝑅) ↾ (𝑈 × 𝑈)) ∈ (∞Met‘𝑈) ∧ ((dist‘𝑅) ↾ (𝑈 × 𝑈)) ∈ (∞Met‘𝑈)) → (𝐼 ∈ ((MetOpen‘((dist‘𝑅) ↾ (𝑈 × 𝑈))) Cn (MetOpen‘((dist‘𝑅) ↾ (𝑈 × 𝑈)))) ↔ (𝐼:𝑈𝑈 ∧ ∀𝑥𝑈𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑦𝑈 ((𝑥((dist‘𝑅) ↾ (𝑈 × 𝑈))𝑦) < 𝑠 → ((𝐼𝑥)((dist‘𝑅) ↾ (𝑈 × 𝑈))(𝐼𝑦)) < 𝑟))))
8784, 84, 86syl2anc 696 . . 3 (𝑅 ∈ NrmRing → (𝐼 ∈ ((MetOpen‘((dist‘𝑅) ↾ (𝑈 × 𝑈))) Cn (MetOpen‘((dist‘𝑅) ↾ (𝑈 × 𝑈)))) ↔ (𝐼:𝑈𝑈 ∧ ∀𝑥𝑈𝑟 ∈ ℝ+𝑠 ∈ ℝ+𝑦𝑈 ((𝑥((dist‘𝑅) ↾ (𝑈 × 𝑈))𝑦) < 𝑠 → ((𝐼𝑥)((dist‘𝑅) ↾ (𝑈 × 𝑈))(𝐼𝑦)) < 𝑟))))
889, 74, 87mpbir2and 995 . 2 (𝑅 ∈ NrmRing → 𝐼 ∈ ((MetOpen‘((dist‘𝑅) ↾ (𝑈 × 𝑈))) Cn (MetOpen‘((dist‘𝑅) ↾ (𝑈 × 𝑈)))))
89 nrginvrcn.j . . . . . . 7 𝐽 = (TopOpen‘𝑅)
9089, 13, 79mstopn 22478 . . . . . 6 (𝑅 ∈ MetSp → 𝐽 = (MetOpen‘((dist‘𝑅) ↾ (𝑋 × 𝑋))))
9124, 25, 903syl 18 . . . . 5 (𝑅 ∈ NrmRing → 𝐽 = (MetOpen‘((dist‘𝑅) ↾ (𝑋 × 𝑋))))
9291oveq1d 6829 . . . 4 (𝑅 ∈ NrmRing → (𝐽t 𝑈) = ((MetOpen‘((dist‘𝑅) ↾ (𝑋 × 𝑋))) ↾t 𝑈))
9378eqcomi 2769 . . . . . 6 ((dist‘𝑅) ↾ (𝑈 × 𝑈)) = (((dist‘𝑅) ↾ (𝑋 × 𝑋)) ↾ (𝑈 × 𝑈))
94 eqid 2760 . . . . . 6 (MetOpen‘((dist‘𝑅) ↾ (𝑋 × 𝑋))) = (MetOpen‘((dist‘𝑅) ↾ (𝑋 × 𝑋)))
9593, 94, 85metrest 22550 . . . . 5 ((((dist‘𝑅) ↾ (𝑋 × 𝑋)) ∈ (∞Met‘𝑋) ∧ 𝑈𝑋) → ((MetOpen‘((dist‘𝑅) ↾ (𝑋 × 𝑋))) ↾t 𝑈) = (MetOpen‘((dist‘𝑅) ↾ (𝑈 × 𝑈))))
9681, 14, 95sylancl 697 . . . 4 (𝑅 ∈ NrmRing → ((MetOpen‘((dist‘𝑅) ↾ (𝑋 × 𝑋))) ↾t 𝑈) = (MetOpen‘((dist‘𝑅) ↾ (𝑈 × 𝑈))))
9792, 96eqtrd 2794 . . 3 (𝑅 ∈ NrmRing → (𝐽t 𝑈) = (MetOpen‘((dist‘𝑅) ↾ (𝑈 × 𝑈))))
9897, 97oveq12d 6832 . 2 (𝑅 ∈ NrmRing → ((𝐽t 𝑈) Cn (𝐽t 𝑈)) = ((MetOpen‘((dist‘𝑅) ↾ (𝑈 × 𝑈))) Cn (MetOpen‘((dist‘𝑅) ↾ (𝑈 × 𝑈)))))
9988, 98eleqtrrd 2842 1 (𝑅 ∈ NrmRing → 𝐼 ∈ ((𝐽t 𝑈) Cn (𝐽t 𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139  wne 2932  wral 3050  wrex 3051  wss 3715  c0 4058  ifcif 4230   class class class wbr 4804   × cxp 5264  cres 5268  wf 6045  cfv 6049  (class class class)co 6814  0cc0 10148  1c1 10149   · cmul 10153   < clt 10286  cle 10287   / cdiv 10896  2c2 11282  +crp 12045  Basecbs 16079  s cress 16080  distcds 16172  t crest 16303  TopOpenctopn 16304  0gc0g 16322  Grpcgrp 17643  mulGrpcmgp 18709  1rcur 18721  Ringcrg 18767  Unitcui 18859  invrcinvr 18891  NzRingcnzr 19479  ∞Metcxmt 19953  MetOpencmopn 19958   Cn ccn 21250  ∞MetSpcxme 22343  MetSpcmt 22344  normcnm 22602  NrmGrpcngp 22603  NrmRingcnrg 22605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-pre-sup 10226
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-tpos 7522  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-oadd 7734  df-er 7913  df-map 8027  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-sup 8515  df-inf 8516  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-2 11291  df-3 11292  df-4 11293  df-5 11294  df-6 11295  df-7 11296  df-8 11297  df-9 11298  df-n0 11505  df-z 11590  df-dec 11706  df-uz 11900  df-q 12002  df-rp 12046  df-xneg 12159  df-xadd 12160  df-xmul 12161  df-fz 12540  df-seq 13016  df-exp 13075  df-cj 14058  df-re 14059  df-im 14060  df-sqrt 14194  df-abs 14195  df-struct 16081  df-ndx 16082  df-slot 16083  df-base 16085  df-sets 16086  df-ress 16087  df-plusg 16176  df-mulr 16177  df-tset 16182  df-ple 16183  df-ds 16186  df-rest 16305  df-0g 16324  df-topgen 16326  df-xrs 16384  df-mgm 17463  df-sgrp 17505  df-mnd 17516  df-grp 17646  df-minusg 17647  df-sbg 17648  df-mgp 18710  df-ur 18722  df-ring 18769  df-oppr 18843  df-dvdsr 18861  df-unit 18862  df-invr 18892  df-abv 19039  df-nzr 19480  df-psmet 19960  df-xmet 19961  df-met 19962  df-bl 19963  df-mopn 19964  df-top 20921  df-topon 20938  df-topsp 20959  df-bases 20972  df-cn 21253  df-cnp 21254  df-xms 22346  df-ms 22347  df-nm 22608  df-ngp 22609  df-nrg 22611
This theorem is referenced by:  nrgtdrg  22718
  Copyright terms: Public domain W3C validator