MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nqpr Structured version   Visualization version   GIF version

Theorem nqpr 9821
Description: The canonical embedding of the rationals into the reals. (Contributed by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
Assertion
Ref Expression
nqpr (𝐴Q → {𝑥𝑥 <Q 𝐴} ∈ P)
Distinct variable group:   𝑥,𝐴

Proof of Theorem nqpr
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nsmallnq 9784 . . . . 5 (𝐴Q → ∃𝑥 𝑥 <Q 𝐴)
2 abn0 3945 . . . . 5 ({𝑥𝑥 <Q 𝐴} ≠ ∅ ↔ ∃𝑥 𝑥 <Q 𝐴)
31, 2sylibr 224 . . . 4 (𝐴Q → {𝑥𝑥 <Q 𝐴} ≠ ∅)
4 0pss 4004 . . . 4 (∅ ⊊ {𝑥𝑥 <Q 𝐴} ↔ {𝑥𝑥 <Q 𝐴} ≠ ∅)
53, 4sylibr 224 . . 3 (𝐴Q → ∅ ⊊ {𝑥𝑥 <Q 𝐴})
6 ltrelnq 9733 . . . . . . 7 <Q ⊆ (Q × Q)
76brel 5158 . . . . . 6 (𝑥 <Q 𝐴 → (𝑥Q𝐴Q))
87simpld 475 . . . . 5 (𝑥 <Q 𝐴𝑥Q)
98abssi 3669 . . . 4 {𝑥𝑥 <Q 𝐴} ⊆ Q
10 ltsonq 9776 . . . . . . 7 <Q Or Q
1110, 6soirri 5510 . . . . . 6 ¬ 𝐴 <Q 𝐴
12 breq1 4647 . . . . . . 7 (𝑥 = 𝐴 → (𝑥 <Q 𝐴𝐴 <Q 𝐴))
1312elabg 3345 . . . . . 6 (𝐴Q → (𝐴 ∈ {𝑥𝑥 <Q 𝐴} ↔ 𝐴 <Q 𝐴))
1411, 13mtbiri 317 . . . . 5 (𝐴Q → ¬ 𝐴 ∈ {𝑥𝑥 <Q 𝐴})
1514ancli 573 . . . 4 (𝐴Q → (𝐴Q ∧ ¬ 𝐴 ∈ {𝑥𝑥 <Q 𝐴}))
16 ssnelpss 3710 . . . 4 ({𝑥𝑥 <Q 𝐴} ⊆ Q → ((𝐴Q ∧ ¬ 𝐴 ∈ {𝑥𝑥 <Q 𝐴}) → {𝑥𝑥 <Q 𝐴} ⊊ Q))
179, 15, 16mpsyl 68 . . 3 (𝐴Q → {𝑥𝑥 <Q 𝐴} ⊊ Q)
185, 17jca 554 . 2 (𝐴Q → (∅ ⊊ {𝑥𝑥 <Q 𝐴} ∧ {𝑥𝑥 <Q 𝐴} ⊊ Q))
19 vex 3198 . . . . 5 𝑦 ∈ V
20 breq1 4647 . . . . 5 (𝑥 = 𝑦 → (𝑥 <Q 𝐴𝑦 <Q 𝐴))
2119, 20elab 3344 . . . 4 (𝑦 ∈ {𝑥𝑥 <Q 𝐴} ↔ 𝑦 <Q 𝐴)
2210, 6sotri 5511 . . . . . . . . 9 ((𝑧 <Q 𝑦𝑦 <Q 𝐴) → 𝑧 <Q 𝐴)
2322expcom 451 . . . . . . . 8 (𝑦 <Q 𝐴 → (𝑧 <Q 𝑦𝑧 <Q 𝐴))
2423adantl 482 . . . . . . 7 ((𝐴Q𝑦 <Q 𝐴) → (𝑧 <Q 𝑦𝑧 <Q 𝐴))
25 vex 3198 . . . . . . . 8 𝑧 ∈ V
26 breq1 4647 . . . . . . . 8 (𝑥 = 𝑧 → (𝑥 <Q 𝐴𝑧 <Q 𝐴))
2725, 26elab 3344 . . . . . . 7 (𝑧 ∈ {𝑥𝑥 <Q 𝐴} ↔ 𝑧 <Q 𝐴)
2824, 27syl6ibr 242 . . . . . 6 ((𝐴Q𝑦 <Q 𝐴) → (𝑧 <Q 𝑦𝑧 ∈ {𝑥𝑥 <Q 𝐴}))
2928alrimiv 1853 . . . . 5 ((𝐴Q𝑦 <Q 𝐴) → ∀𝑧(𝑧 <Q 𝑦𝑧 ∈ {𝑥𝑥 <Q 𝐴}))
30 ltbtwnnq 9785 . . . . . . . 8 (𝑦 <Q 𝐴 ↔ ∃𝑧(𝑦 <Q 𝑧𝑧 <Q 𝐴))
3127anbi2i 729 . . . . . . . . . . 11 ((𝑦 <Q 𝑧𝑧 ∈ {𝑥𝑥 <Q 𝐴}) ↔ (𝑦 <Q 𝑧𝑧 <Q 𝐴))
3231biimpri 218 . . . . . . . . . 10 ((𝑦 <Q 𝑧𝑧 <Q 𝐴) → (𝑦 <Q 𝑧𝑧 ∈ {𝑥𝑥 <Q 𝐴}))
3332ancomd 467 . . . . . . . . 9 ((𝑦 <Q 𝑧𝑧 <Q 𝐴) → (𝑧 ∈ {𝑥𝑥 <Q 𝐴} ∧ 𝑦 <Q 𝑧))
3433eximi 1760 . . . . . . . 8 (∃𝑧(𝑦 <Q 𝑧𝑧 <Q 𝐴) → ∃𝑧(𝑧 ∈ {𝑥𝑥 <Q 𝐴} ∧ 𝑦 <Q 𝑧))
3530, 34sylbi 207 . . . . . . 7 (𝑦 <Q 𝐴 → ∃𝑧(𝑧 ∈ {𝑥𝑥 <Q 𝐴} ∧ 𝑦 <Q 𝑧))
3635adantl 482 . . . . . 6 ((𝐴Q𝑦 <Q 𝐴) → ∃𝑧(𝑧 ∈ {𝑥𝑥 <Q 𝐴} ∧ 𝑦 <Q 𝑧))
37 df-rex 2915 . . . . . 6 (∃𝑧 ∈ {𝑥𝑥 <Q 𝐴}𝑦 <Q 𝑧 ↔ ∃𝑧(𝑧 ∈ {𝑥𝑥 <Q 𝐴} ∧ 𝑦 <Q 𝑧))
3836, 37sylibr 224 . . . . 5 ((𝐴Q𝑦 <Q 𝐴) → ∃𝑧 ∈ {𝑥𝑥 <Q 𝐴}𝑦 <Q 𝑧)
3929, 38jca 554 . . . 4 ((𝐴Q𝑦 <Q 𝐴) → (∀𝑧(𝑧 <Q 𝑦𝑧 ∈ {𝑥𝑥 <Q 𝐴}) ∧ ∃𝑧 ∈ {𝑥𝑥 <Q 𝐴}𝑦 <Q 𝑧))
4021, 39sylan2b 492 . . 3 ((𝐴Q𝑦 ∈ {𝑥𝑥 <Q 𝐴}) → (∀𝑧(𝑧 <Q 𝑦𝑧 ∈ {𝑥𝑥 <Q 𝐴}) ∧ ∃𝑧 ∈ {𝑥𝑥 <Q 𝐴}𝑦 <Q 𝑧))
4140ralrimiva 2963 . 2 (𝐴Q → ∀𝑦 ∈ {𝑥𝑥 <Q 𝐴} (∀𝑧(𝑧 <Q 𝑦𝑧 ∈ {𝑥𝑥 <Q 𝐴}) ∧ ∃𝑧 ∈ {𝑥𝑥 <Q 𝐴}𝑦 <Q 𝑧))
42 elnp 9794 . 2 ({𝑥𝑥 <Q 𝐴} ∈ P ↔ ((∅ ⊊ {𝑥𝑥 <Q 𝐴} ∧ {𝑥𝑥 <Q 𝐴} ⊊ Q) ∧ ∀𝑦 ∈ {𝑥𝑥 <Q 𝐴} (∀𝑧(𝑧 <Q 𝑦𝑧 ∈ {𝑥𝑥 <Q 𝐴}) ∧ ∃𝑧 ∈ {𝑥𝑥 <Q 𝐴}𝑦 <Q 𝑧)))
4318, 41, 42sylanbrc 697 1 (𝐴Q → {𝑥𝑥 <Q 𝐴} ∈ P)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  wal 1479  wex 1702  wcel 1988  {cab 2606  wne 2791  wral 2909  wrex 2910  wss 3567  wpss 3568  c0 3907   class class class wbr 4644  Qcnq 9659   <Q cltq 9665  Pcnp 9666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-inf2 8523
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-1st 7153  df-2nd 7154  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-1o 7545  df-oadd 7549  df-omul 7550  df-er 7727  df-ni 9679  df-pli 9680  df-mi 9681  df-lti 9682  df-plpq 9715  df-mpq 9716  df-ltpq 9717  df-enq 9718  df-nq 9719  df-erq 9720  df-plq 9721  df-mq 9722  df-1nq 9723  df-rq 9724  df-ltnq 9725  df-np 9788
This theorem is referenced by:  1pr  9822
  Copyright terms: Public domain W3C validator