![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nprrel12 | Structured version Visualization version GIF version |
Description: Proper classes are not related via any relation. (Contributed by AV, 29-Oct-2021.) |
Ref | Expression |
---|---|
nprrel12.1 | ⊢ Rel 𝑅 |
Ref | Expression |
---|---|
nprrel12 | ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ¬ 𝐴𝑅𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nprrel12.1 | . . 3 ⊢ Rel 𝑅 | |
2 | brrelex12 5189 | . . 3 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
3 | 1, 2 | mpan 706 | . 2 ⊢ (𝐴𝑅𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
4 | 3 | con3i 150 | 1 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ¬ 𝐴𝑅𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 ∈ wcel 2030 Vcvv 3231 class class class wbr 4685 Rel wrel 5148 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-br 4686 df-opab 4746 df-xp 5149 df-rel 5150 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |