MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  notzfaus Structured version   Visualization version   GIF version

Theorem notzfaus 4971
Description: In the Separation Scheme zfauscl 4917, we require that 𝑦 not occur in 𝜑 (which can be generalized to "not be free in"). Here we show special cases of 𝐴 and 𝜑 that result in a contradiction if that requirement is not met. (Contributed by NM, 8-Feb-2006.)
Hypotheses
Ref Expression
notzfaus.1 𝐴 = {∅}
notzfaus.2 (𝜑 ↔ ¬ 𝑥𝑦)
Assertion
Ref Expression
notzfaus ¬ ∃𝑦𝑥(𝑥𝑦 ↔ (𝑥𝐴𝜑))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑦)

Proof of Theorem notzfaus
StepHypRef Expression
1 notzfaus.1 . . . . . 6 𝐴 = {∅}
2 0ex 4924 . . . . . . 7 ∅ ∈ V
32snnz 4444 . . . . . 6 {∅} ≠ ∅
41, 3eqnetri 3013 . . . . 5 𝐴 ≠ ∅
5 n0 4078 . . . . 5 (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)
64, 5mpbi 220 . . . 4 𝑥 𝑥𝐴
7 biimt 349 . . . . . 6 (𝑥𝐴 → (𝑥𝑦 ↔ (𝑥𝐴𝑥𝑦)))
8 iman 388 . . . . . . 7 ((𝑥𝐴𝑥𝑦) ↔ ¬ (𝑥𝐴 ∧ ¬ 𝑥𝑦))
9 notzfaus.2 . . . . . . . 8 (𝜑 ↔ ¬ 𝑥𝑦)
109anbi2i 609 . . . . . . 7 ((𝑥𝐴𝜑) ↔ (𝑥𝐴 ∧ ¬ 𝑥𝑦))
118, 10xchbinxr 324 . . . . . 6 ((𝑥𝐴𝑥𝑦) ↔ ¬ (𝑥𝐴𝜑))
127, 11syl6bb 276 . . . . 5 (𝑥𝐴 → (𝑥𝑦 ↔ ¬ (𝑥𝐴𝜑)))
13 xor3 371 . . . . 5 (¬ (𝑥𝑦 ↔ (𝑥𝐴𝜑)) ↔ (𝑥𝑦 ↔ ¬ (𝑥𝐴𝜑)))
1412, 13sylibr 224 . . . 4 (𝑥𝐴 → ¬ (𝑥𝑦 ↔ (𝑥𝐴𝜑)))
156, 14eximii 1912 . . 3 𝑥 ¬ (𝑥𝑦 ↔ (𝑥𝐴𝜑))
16 exnal 1902 . . 3 (∃𝑥 ¬ (𝑥𝑦 ↔ (𝑥𝐴𝜑)) ↔ ¬ ∀𝑥(𝑥𝑦 ↔ (𝑥𝐴𝜑)))
1715, 16mpbi 220 . 2 ¬ ∀𝑥(𝑥𝑦 ↔ (𝑥𝐴𝜑))
1817nex 1879 1 ¬ ∃𝑦𝑥(𝑥𝑦 ↔ (𝑥𝐴𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382  wal 1629   = wceq 1631  wex 1852  wcel 2145  wne 2943  c0 4063  {csn 4316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-nul 4923
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-v 3353  df-dif 3726  df-nul 4064  df-sn 4317
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator