Step | Hyp | Ref
| Expression |
1 | | simp2l 1242 |
. . . 4
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
𝑈 ∈ 𝐴) → 𝐴 ⊆ No
) |
2 | | simp3 1133 |
. . . 4
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
𝑈 ∈ 𝐴) → 𝑈 ∈ 𝐴) |
3 | 1, 2 | sseldd 3746 |
. . 3
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
𝑈 ∈ 𝐴) → 𝑈 ∈ No
) |
4 | | nosupbnd1.1 |
. . . . . 6
⊢ 𝑆 = if(∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦, ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2𝑜〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) |
5 | 4 | nosupno 32177 |
. . . . 5
⊢ ((𝐴 ⊆
No ∧ 𝐴 ∈
V) → 𝑆 ∈ No ) |
6 | 5 | 3ad2ant2 1129 |
. . . 4
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
𝑈 ∈ 𝐴) → 𝑆 ∈ No
) |
7 | | nodmon 32131 |
. . . 4
⊢ (𝑆 ∈
No → dom 𝑆
∈ On) |
8 | 6, 7 | syl 17 |
. . 3
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
𝑈 ∈ 𝐴) → dom 𝑆 ∈ On) |
9 | | noreson 32141 |
. . 3
⊢ ((𝑈 ∈
No ∧ dom 𝑆
∈ On) → (𝑈
↾ dom 𝑆) ∈ No ) |
10 | 3, 8, 9 | syl2anc 696 |
. 2
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
𝑈 ∈ 𝐴) → (𝑈 ↾ dom 𝑆) ∈ No
) |
11 | | dmres 5578 |
. . . 4
⊢ dom
(𝑈 ↾ dom 𝑆) = (dom 𝑆 ∩ dom 𝑈) |
12 | | inss1 3977 |
. . . 4
⊢ (dom
𝑆 ∩ dom 𝑈) ⊆ dom 𝑆 |
13 | 11, 12 | eqsstri 3777 |
. . 3
⊢ dom
(𝑈 ↾ dom 𝑆) ⊆ dom 𝑆 |
14 | 13 | a1i 11 |
. 2
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
𝑈 ∈ 𝐴) → dom (𝑈 ↾ dom 𝑆) ⊆ dom 𝑆) |
15 | | ssid 3766 |
. . 3
⊢ dom 𝑆 ⊆ dom 𝑆 |
16 | 15 | a1i 11 |
. 2
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
𝑈 ∈ 𝐴) → dom 𝑆 ⊆ dom 𝑆) |
17 | | iffalse 4240 |
. . . . . . . . . . . 12
⊢ (¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → if(∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦, ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2𝑜〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) = (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) |
18 | 4, 17 | syl5eq 2807 |
. . . . . . . . . . 11
⊢ (¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → 𝑆 = (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) |
19 | 18 | dmeqd 5482 |
. . . . . . . . . 10
⊢ (¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → dom 𝑆 = dom (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) |
20 | | iotaex 6030 |
. . . . . . . . . . 11
⊢
(℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)) ∈ V |
21 | | eqid 2761 |
. . . . . . . . . . 11
⊢ (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥))) = (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥))) |
22 | 20, 21 | dmmpti 6185 |
. . . . . . . . . 10
⊢ dom
(𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥))) = {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} |
23 | 19, 22 | syl6eq 2811 |
. . . . . . . . 9
⊢ (¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → dom 𝑆 = {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))}) |
24 | 23 | eleq2d 2826 |
. . . . . . . 8
⊢ (¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → (ℎ ∈ dom 𝑆 ↔ ℎ ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))})) |
25 | | vex 3344 |
. . . . . . . . 9
⊢ ℎ ∈ V |
26 | | eleq1w 2823 |
. . . . . . . . . . . 12
⊢ (𝑦 = ℎ → (𝑦 ∈ dom 𝑢 ↔ ℎ ∈ dom 𝑢)) |
27 | | suceq 5952 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = ℎ → suc 𝑦 = suc ℎ) |
28 | 27 | reseq2d 5552 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = ℎ → (𝑢 ↾ suc 𝑦) = (𝑢 ↾ suc ℎ)) |
29 | 27 | reseq2d 5552 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = ℎ → (𝑣 ↾ suc 𝑦) = (𝑣 ↾ suc ℎ)) |
30 | 28, 29 | eqeq12d 2776 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = ℎ → ((𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦) ↔ (𝑢 ↾ suc ℎ) = (𝑣 ↾ suc ℎ))) |
31 | 30 | imbi2d 329 |
. . . . . . . . . . . . 13
⊢ (𝑦 = ℎ → ((¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)) ↔ (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc ℎ) = (𝑣 ↾ suc ℎ)))) |
32 | 31 | ralbidv 3125 |
. . . . . . . . . . . 12
⊢ (𝑦 = ℎ → (∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)) ↔ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc ℎ) = (𝑣 ↾ suc ℎ)))) |
33 | 26, 32 | anbi12d 749 |
. . . . . . . . . . 11
⊢ (𝑦 = ℎ → ((𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) ↔ (ℎ ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc ℎ) = (𝑣 ↾ suc ℎ))))) |
34 | 33 | rexbidv 3191 |
. . . . . . . . . 10
⊢ (𝑦 = ℎ → (∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) ↔ ∃𝑢 ∈ 𝐴 (ℎ ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc ℎ) = (𝑣 ↾ suc ℎ))))) |
35 | | dmeq 5480 |
. . . . . . . . . . . . 13
⊢ (𝑢 = 𝑝 → dom 𝑢 = dom 𝑝) |
36 | 35 | eleq2d 2826 |
. . . . . . . . . . . 12
⊢ (𝑢 = 𝑝 → (ℎ ∈ dom 𝑢 ↔ ℎ ∈ dom 𝑝)) |
37 | | breq2 4809 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 = 𝑝 → (𝑣 <s 𝑢 ↔ 𝑣 <s 𝑝)) |
38 | 37 | notbid 307 |
. . . . . . . . . . . . . 14
⊢ (𝑢 = 𝑝 → (¬ 𝑣 <s 𝑢 ↔ ¬ 𝑣 <s 𝑝)) |
39 | | reseq1 5546 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 = 𝑝 → (𝑢 ↾ suc ℎ) = (𝑝 ↾ suc ℎ)) |
40 | 39 | eqeq1d 2763 |
. . . . . . . . . . . . . 14
⊢ (𝑢 = 𝑝 → ((𝑢 ↾ suc ℎ) = (𝑣 ↾ suc ℎ) ↔ (𝑝 ↾ suc ℎ) = (𝑣 ↾ suc ℎ))) |
41 | 38, 40 | imbi12d 333 |
. . . . . . . . . . . . 13
⊢ (𝑢 = 𝑝 → ((¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc ℎ) = (𝑣 ↾ suc ℎ)) ↔ (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc ℎ) = (𝑣 ↾ suc ℎ)))) |
42 | 41 | ralbidv 3125 |
. . . . . . . . . . . 12
⊢ (𝑢 = 𝑝 → (∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc ℎ) = (𝑣 ↾ suc ℎ)) ↔ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc ℎ) = (𝑣 ↾ suc ℎ)))) |
43 | 36, 42 | anbi12d 749 |
. . . . . . . . . . 11
⊢ (𝑢 = 𝑝 → ((ℎ ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc ℎ) = (𝑣 ↾ suc ℎ))) ↔ (ℎ ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc ℎ) = (𝑣 ↾ suc ℎ))))) |
44 | 43 | cbvrexv 3312 |
. . . . . . . . . 10
⊢
(∃𝑢 ∈
𝐴 (ℎ ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc ℎ) = (𝑣 ↾ suc ℎ))) ↔ ∃𝑝 ∈ 𝐴 (ℎ ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc ℎ) = (𝑣 ↾ suc ℎ)))) |
45 | 34, 44 | syl6bb 276 |
. . . . . . . . 9
⊢ (𝑦 = ℎ → (∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦))) ↔ ∃𝑝 ∈ 𝐴 (ℎ ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc ℎ) = (𝑣 ↾ suc ℎ))))) |
46 | 25, 45 | elab 3491 |
. . . . . . . 8
⊢ (ℎ ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↔ ∃𝑝 ∈ 𝐴 (ℎ ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc ℎ) = (𝑣 ↾ suc ℎ)))) |
47 | 24, 46 | syl6bb 276 |
. . . . . . 7
⊢ (¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 → (ℎ ∈ dom 𝑆 ↔ ∃𝑝 ∈ 𝐴 (ℎ ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc ℎ) = (𝑣 ↾ suc ℎ))))) |
48 | 47 | 3ad2ant1 1128 |
. . . . . 6
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
𝑈 ∈ 𝐴) → (ℎ ∈ dom 𝑆 ↔ ∃𝑝 ∈ 𝐴 (ℎ ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc ℎ) = (𝑣 ↾ suc ℎ))))) |
49 | | simpl1 1228 |
. . . . . . . . 9
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
𝑈 ∈ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ (ℎ ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc ℎ) = (𝑣 ↾ suc ℎ))))) → ¬ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) |
50 | | simpl2 1230 |
. . . . . . . . 9
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
𝑈 ∈ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ (ℎ ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc ℎ) = (𝑣 ↾ suc ℎ))))) → (𝐴 ⊆ No
∧ 𝐴 ∈
V)) |
51 | | simprl 811 |
. . . . . . . . 9
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
𝑈 ∈ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ (ℎ ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc ℎ) = (𝑣 ↾ suc ℎ))))) → 𝑝 ∈ 𝐴) |
52 | | simprrl 823 |
. . . . . . . . 9
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
𝑈 ∈ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ (ℎ ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc ℎ) = (𝑣 ↾ suc ℎ))))) → ℎ ∈ dom 𝑝) |
53 | | simprrr 824 |
. . . . . . . . 9
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
𝑈 ∈ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ (ℎ ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc ℎ) = (𝑣 ↾ suc ℎ))))) → ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc ℎ) = (𝑣 ↾ suc ℎ))) |
54 | 4 | nosupres 32181 |
. . . . . . . . 9
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝑝 ∈ 𝐴 ∧ ℎ ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc ℎ) = (𝑣 ↾ suc ℎ)))) → (𝑆 ↾ suc ℎ) = (𝑝 ↾ suc ℎ)) |
55 | 49, 50, 51, 52, 53, 54 | syl113anc 1489 |
. . . . . . . 8
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
𝑈 ∈ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ (ℎ ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc ℎ) = (𝑣 ↾ suc ℎ))))) → (𝑆 ↾ suc ℎ) = (𝑝 ↾ suc ℎ)) |
56 | | simpl2l 1283 |
. . . . . . . . . . . . . . 15
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
𝑈 ∈ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ (ℎ ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc ℎ) = (𝑣 ↾ suc ℎ))))) → 𝐴 ⊆ No
) |
57 | 56, 51 | sseldd 3746 |
. . . . . . . . . . . . . 14
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
𝑈 ∈ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ (ℎ ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc ℎ) = (𝑣 ↾ suc ℎ))))) → 𝑝 ∈ No
) |
58 | 3 | adantr 472 |
. . . . . . . . . . . . . 14
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
𝑈 ∈ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ (ℎ ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc ℎ) = (𝑣 ↾ suc ℎ))))) → 𝑈 ∈ No
) |
59 | | sltso 32155 |
. . . . . . . . . . . . . . 15
⊢ <s Or
No |
60 | | soasym 31986 |
. . . . . . . . . . . . . . 15
⊢ (( <s
Or No ∧ (𝑝 ∈ No
∧ 𝑈 ∈ No )) → (𝑝 <s 𝑈 → ¬ 𝑈 <s 𝑝)) |
61 | 59, 60 | mpan 708 |
. . . . . . . . . . . . . 14
⊢ ((𝑝 ∈
No ∧ 𝑈 ∈
No ) → (𝑝 <s 𝑈 → ¬ 𝑈 <s 𝑝)) |
62 | 57, 58, 61 | syl2anc 696 |
. . . . . . . . . . . . 13
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
𝑈 ∈ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ (ℎ ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc ℎ) = (𝑣 ↾ suc ℎ))))) → (𝑝 <s 𝑈 → ¬ 𝑈 <s 𝑝)) |
63 | | simpl3 1232 |
. . . . . . . . . . . . . 14
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
𝑈 ∈ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ (ℎ ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc ℎ) = (𝑣 ↾ suc ℎ))))) → 𝑈 ∈ 𝐴) |
64 | | breq1 4808 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑣 = 𝑈 → (𝑣 <s 𝑝 ↔ 𝑈 <s 𝑝)) |
65 | 64 | notbid 307 |
. . . . . . . . . . . . . . . 16
⊢ (𝑣 = 𝑈 → (¬ 𝑣 <s 𝑝 ↔ ¬ 𝑈 <s 𝑝)) |
66 | | reseq1 5546 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑣 = 𝑈 → (𝑣 ↾ suc ℎ) = (𝑈 ↾ suc ℎ)) |
67 | 66 | eqeq2d 2771 |
. . . . . . . . . . . . . . . 16
⊢ (𝑣 = 𝑈 → ((𝑝 ↾ suc ℎ) = (𝑣 ↾ suc ℎ) ↔ (𝑝 ↾ suc ℎ) = (𝑈 ↾ suc ℎ))) |
68 | 65, 67 | imbi12d 333 |
. . . . . . . . . . . . . . 15
⊢ (𝑣 = 𝑈 → ((¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc ℎ) = (𝑣 ↾ suc ℎ)) ↔ (¬ 𝑈 <s 𝑝 → (𝑝 ↾ suc ℎ) = (𝑈 ↾ suc ℎ)))) |
69 | 68 | rspcv 3446 |
. . . . . . . . . . . . . 14
⊢ (𝑈 ∈ 𝐴 → (∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc ℎ) = (𝑣 ↾ suc ℎ)) → (¬ 𝑈 <s 𝑝 → (𝑝 ↾ suc ℎ) = (𝑈 ↾ suc ℎ)))) |
70 | 63, 53, 69 | sylc 65 |
. . . . . . . . . . . . 13
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
𝑈 ∈ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ (ℎ ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc ℎ) = (𝑣 ↾ suc ℎ))))) → (¬ 𝑈 <s 𝑝 → (𝑝 ↾ suc ℎ) = (𝑈 ↾ suc ℎ))) |
71 | 62, 70 | syld 47 |
. . . . . . . . . . . 12
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
𝑈 ∈ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ (ℎ ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc ℎ) = (𝑣 ↾ suc ℎ))))) → (𝑝 <s 𝑈 → (𝑝 ↾ suc ℎ) = (𝑈 ↾ suc ℎ))) |
72 | 71 | imp 444 |
. . . . . . . . . . 11
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
𝑈 ∈ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ (ℎ ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc ℎ) = (𝑣 ↾ suc ℎ))))) ∧ 𝑝 <s 𝑈) → (𝑝 ↾ suc ℎ) = (𝑈 ↾ suc ℎ)) |
73 | | nodmon 32131 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑝 ∈
No → dom 𝑝
∈ On) |
74 | 57, 73 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
𝑈 ∈ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ (ℎ ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc ℎ) = (𝑣 ↾ suc ℎ))))) → dom 𝑝 ∈ On) |
75 | | onelon 5910 |
. . . . . . . . . . . . . . . 16
⊢ ((dom
𝑝 ∈ On ∧ ℎ ∈ dom 𝑝) → ℎ ∈ On) |
76 | 74, 52, 75 | syl2anc 696 |
. . . . . . . . . . . . . . 15
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
𝑈 ∈ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ (ℎ ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc ℎ) = (𝑣 ↾ suc ℎ))))) → ℎ ∈ On) |
77 | | sucelon 7184 |
. . . . . . . . . . . . . . 15
⊢ (ℎ ∈ On ↔ suc ℎ ∈ On) |
78 | 76, 77 | sylib 208 |
. . . . . . . . . . . . . 14
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
𝑈 ∈ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ (ℎ ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc ℎ) = (𝑣 ↾ suc ℎ))))) → suc ℎ ∈ On) |
79 | | noreson 32141 |
. . . . . . . . . . . . . 14
⊢ ((𝑈 ∈
No ∧ suc ℎ
∈ On) → (𝑈
↾ suc ℎ) ∈ No ) |
80 | 58, 78, 79 | syl2anc 696 |
. . . . . . . . . . . . 13
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
𝑈 ∈ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ (ℎ ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc ℎ) = (𝑣 ↾ suc ℎ))))) → (𝑈 ↾ suc ℎ) ∈ No
) |
81 | | sonr 5209 |
. . . . . . . . . . . . . 14
⊢ (( <s
Or No ∧ (𝑈 ↾ suc ℎ) ∈ No )
→ ¬ (𝑈 ↾ suc
ℎ) <s (𝑈 ↾ suc ℎ)) |
82 | 59, 81 | mpan 708 |
. . . . . . . . . . . . 13
⊢ ((𝑈 ↾ suc ℎ) ∈ No
→ ¬ (𝑈 ↾ suc
ℎ) <s (𝑈 ↾ suc ℎ)) |
83 | 80, 82 | syl 17 |
. . . . . . . . . . . 12
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
𝑈 ∈ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ (ℎ ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc ℎ) = (𝑣 ↾ suc ℎ))))) → ¬ (𝑈 ↾ suc ℎ) <s (𝑈 ↾ suc ℎ)) |
84 | 83 | adantr 472 |
. . . . . . . . . . 11
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
𝑈 ∈ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ (ℎ ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc ℎ) = (𝑣 ↾ suc ℎ))))) ∧ 𝑝 <s 𝑈) → ¬ (𝑈 ↾ suc ℎ) <s (𝑈 ↾ suc ℎ)) |
85 | 72, 84 | eqnbrtrd 4823 |
. . . . . . . . . 10
⊢ ((((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
𝑈 ∈ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ (ℎ ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc ℎ) = (𝑣 ↾ suc ℎ))))) ∧ 𝑝 <s 𝑈) → ¬ (𝑝 ↾ suc ℎ) <s (𝑈 ↾ suc ℎ)) |
86 | 85 | ex 449 |
. . . . . . . . 9
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
𝑈 ∈ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ (ℎ ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc ℎ) = (𝑣 ↾ suc ℎ))))) → (𝑝 <s 𝑈 → ¬ (𝑝 ↾ suc ℎ) <s (𝑈 ↾ suc ℎ))) |
87 | | sltres 32143 |
. . . . . . . . . . 11
⊢ ((𝑝 ∈
No ∧ 𝑈 ∈
No ∧ suc ℎ ∈ On) → ((𝑝 ↾ suc ℎ) <s (𝑈 ↾ suc ℎ) → 𝑝 <s 𝑈)) |
88 | 57, 58, 78, 87 | syl3anc 1477 |
. . . . . . . . . 10
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
𝑈 ∈ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ (ℎ ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc ℎ) = (𝑣 ↾ suc ℎ))))) → ((𝑝 ↾ suc ℎ) <s (𝑈 ↾ suc ℎ) → 𝑝 <s 𝑈)) |
89 | 88 | con3d 148 |
. . . . . . . . 9
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
𝑈 ∈ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ (ℎ ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc ℎ) = (𝑣 ↾ suc ℎ))))) → (¬ 𝑝 <s 𝑈 → ¬ (𝑝 ↾ suc ℎ) <s (𝑈 ↾ suc ℎ))) |
90 | 86, 89 | pm2.61d 170 |
. . . . . . . 8
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
𝑈 ∈ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ (ℎ ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc ℎ) = (𝑣 ↾ suc ℎ))))) → ¬ (𝑝 ↾ suc ℎ) <s (𝑈 ↾ suc ℎ)) |
91 | 55, 90 | eqnbrtrd 4823 |
. . . . . . 7
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
𝑈 ∈ 𝐴) ∧ (𝑝 ∈ 𝐴 ∧ (ℎ ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc ℎ) = (𝑣 ↾ suc ℎ))))) → ¬ (𝑆 ↾ suc ℎ) <s (𝑈 ↾ suc ℎ)) |
92 | 91 | rexlimdvaa 3171 |
. . . . . 6
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
𝑈 ∈ 𝐴) → (∃𝑝 ∈ 𝐴 (ℎ ∈ dom 𝑝 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑝 → (𝑝 ↾ suc ℎ) = (𝑣 ↾ suc ℎ))) → ¬ (𝑆 ↾ suc ℎ) <s (𝑈 ↾ suc ℎ))) |
93 | 48, 92 | sylbid 230 |
. . . . 5
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
𝑈 ∈ 𝐴) → (ℎ ∈ dom 𝑆 → ¬ (𝑆 ↾ suc ℎ) <s (𝑈 ↾ suc ℎ))) |
94 | 93 | imp 444 |
. . . 4
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
𝑈 ∈ 𝐴) ∧ ℎ ∈ dom 𝑆) → ¬ (𝑆 ↾ suc ℎ) <s (𝑈 ↾ suc ℎ)) |
95 | | nodmord 32134 |
. . . . . . . 8
⊢ (𝑆 ∈
No → Ord dom 𝑆) |
96 | | ordsucss 7185 |
. . . . . . . 8
⊢ (Ord dom
𝑆 → (ℎ ∈ dom 𝑆 → suc ℎ ⊆ dom 𝑆)) |
97 | 6, 95, 96 | 3syl 18 |
. . . . . . 7
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
𝑈 ∈ 𝐴) → (ℎ ∈ dom 𝑆 → suc ℎ ⊆ dom 𝑆)) |
98 | 97 | imp 444 |
. . . . . 6
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
𝑈 ∈ 𝐴) ∧ ℎ ∈ dom 𝑆) → suc ℎ ⊆ dom 𝑆) |
99 | 98 | resabs1d 5587 |
. . . . 5
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
𝑈 ∈ 𝐴) ∧ ℎ ∈ dom 𝑆) → ((𝑈 ↾ dom 𝑆) ↾ suc ℎ) = (𝑈 ↾ suc ℎ)) |
100 | 99 | breq2d 4817 |
. . . 4
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
𝑈 ∈ 𝐴) ∧ ℎ ∈ dom 𝑆) → ((𝑆 ↾ suc ℎ) <s ((𝑈 ↾ dom 𝑆) ↾ suc ℎ) ↔ (𝑆 ↾ suc ℎ) <s (𝑈 ↾ suc ℎ))) |
101 | 94, 100 | mtbird 314 |
. . 3
⊢ (((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
𝑈 ∈ 𝐴) ∧ ℎ ∈ dom 𝑆) → ¬ (𝑆 ↾ suc ℎ) <s ((𝑈 ↾ dom 𝑆) ↾ suc ℎ)) |
102 | 101 | ralrimiva 3105 |
. 2
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
𝑈 ∈ 𝐴) → ∀ℎ ∈ dom 𝑆 ¬ (𝑆 ↾ suc ℎ) <s ((𝑈 ↾ dom 𝑆) ↾ suc ℎ)) |
103 | | noresle 32174 |
. 2
⊢ ((((𝑈 ↾ dom 𝑆) ∈ No
∧ 𝑆 ∈ No ) ∧ (dom (𝑈 ↾ dom 𝑆) ⊆ dom 𝑆 ∧ dom 𝑆 ⊆ dom 𝑆 ∧ ∀ℎ ∈ dom 𝑆 ¬ (𝑆 ↾ suc ℎ) <s ((𝑈 ↾ dom 𝑆) ↾ suc ℎ))) → ¬ 𝑆 <s (𝑈 ↾ dom 𝑆)) |
104 | 10, 6, 14, 16, 102, 103 | syl23anc 1484 |
1
⊢ ((¬
∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦 ∧ (𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
𝑈 ∈ 𝐴) → ¬ 𝑆 <s (𝑈 ↾ dom 𝑆)) |