![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nosgnn0i | Structured version Visualization version GIF version |
Description: If 𝑋 is a surreal sign, then it is not null. (Contributed by Scott Fenton, 3-Aug-2011.) |
Ref | Expression |
---|---|
nosgnn0i.1 | ⊢ 𝑋 ∈ {1𝑜, 2𝑜} |
Ref | Expression |
---|---|
nosgnn0i | ⊢ ∅ ≠ 𝑋 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nosgnn0 31936 | . . 3 ⊢ ¬ ∅ ∈ {1𝑜, 2𝑜} | |
2 | nosgnn0i.1 | . . . 4 ⊢ 𝑋 ∈ {1𝑜, 2𝑜} | |
3 | eleq1 2718 | . . . 4 ⊢ (∅ = 𝑋 → (∅ ∈ {1𝑜, 2𝑜} ↔ 𝑋 ∈ {1𝑜, 2𝑜})) | |
4 | 2, 3 | mpbiri 248 | . . 3 ⊢ (∅ = 𝑋 → ∅ ∈ {1𝑜, 2𝑜}) |
5 | 1, 4 | mto 188 | . 2 ⊢ ¬ ∅ = 𝑋 |
6 | 5 | neir 2826 | 1 ⊢ ∅ ≠ 𝑋 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1523 ∈ wcel 2030 ≠ wne 2823 ∅c0 3948 {cpr 4212 1𝑜c1o 7598 2𝑜c2o 7599 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-nul 4822 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-v 3233 df-dif 3610 df-un 3612 df-nul 3949 df-sn 4211 df-pr 4213 df-suc 5767 df-1o 7605 df-2o 7606 |
This theorem is referenced by: sltres 31940 noextenddif 31946 nolesgn2ores 31950 nosepnelem 31955 nosepdmlem 31958 nolt02o 31970 nosupbnd1lem3 31981 nosupbnd1lem5 31983 nosupbnd2lem1 31986 |
Copyright terms: Public domain | W3C validator |