![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nosgnn0 | Structured version Visualization version GIF version |
Description: ∅ is not a surreal sign. (Contributed by Scott Fenton, 16-Jun-2011.) |
Ref | Expression |
---|---|
nosgnn0 | ⊢ ¬ ∅ ∈ {1𝑜, 2𝑜} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1n0 7620 | . . . 4 ⊢ 1𝑜 ≠ ∅ | |
2 | 1 | nesymi 2880 | . . 3 ⊢ ¬ ∅ = 1𝑜 |
3 | nsuceq0 5843 | . . . . 5 ⊢ suc 1𝑜 ≠ ∅ | |
4 | necom 2876 | . . . . . 6 ⊢ (suc 1𝑜 ≠ ∅ ↔ ∅ ≠ suc 1𝑜) | |
5 | df-2o 7606 | . . . . . . 7 ⊢ 2𝑜 = suc 1𝑜 | |
6 | 5 | neeq2i 2888 | . . . . . 6 ⊢ (∅ ≠ 2𝑜 ↔ ∅ ≠ suc 1𝑜) |
7 | 4, 6 | bitr4i 267 | . . . . 5 ⊢ (suc 1𝑜 ≠ ∅ ↔ ∅ ≠ 2𝑜) |
8 | 3, 7 | mpbi 220 | . . . 4 ⊢ ∅ ≠ 2𝑜 |
9 | 8 | neii 2825 | . . 3 ⊢ ¬ ∅ = 2𝑜 |
10 | 2, 9 | pm3.2ni 917 | . 2 ⊢ ¬ (∅ = 1𝑜 ∨ ∅ = 2𝑜) |
11 | 0ex 4823 | . . 3 ⊢ ∅ ∈ V | |
12 | 11 | elpr 4231 | . 2 ⊢ (∅ ∈ {1𝑜, 2𝑜} ↔ (∅ = 1𝑜 ∨ ∅ = 2𝑜)) |
13 | 10, 12 | mtbir 312 | 1 ⊢ ¬ ∅ ∈ {1𝑜, 2𝑜} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∨ wo 382 = wceq 1523 ∈ wcel 2030 ≠ wne 2823 ∅c0 3948 {cpr 4212 suc csuc 5763 1𝑜c1o 7598 2𝑜c2o 7599 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-nul 4822 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-v 3233 df-dif 3610 df-un 3612 df-nul 3949 df-sn 4211 df-pr 4213 df-suc 5767 df-1o 7605 df-2o 7606 |
This theorem is referenced by: nosgnn0i 31937 sltres 31940 noseponlem 31942 sltso 31952 nosepssdm 31961 nodenselem8 31966 nolt02olem 31969 |
Copyright terms: Public domain | W3C validator |