Mathbox for Scott Fenton < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  noseponlem Structured version   Visualization version   GIF version

Theorem noseponlem 31575
 Description: Lemma for nosepon 31576. Consider a case of proper subset domain. (Contributed by Scott Fenton, 21-Sep-2020.)
Assertion
Ref Expression
noseponlem ((𝐴 No 𝐵 No ∧ dom 𝐴 ∈ dom 𝐵) → ¬ ∀𝑥 ∈ On (𝐴𝑥) = (𝐵𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem noseponlem
StepHypRef Expression
1 nodmon 31557 . . . 4 (𝐴 No → dom 𝐴 ∈ On)
213ad2ant1 1080 . . 3 ((𝐴 No 𝐵 No ∧ dom 𝐴 ∈ dom 𝐵) → dom 𝐴 ∈ On)
3 nodmord 31560 . . . . . . 7 (𝐴 No → Ord dom 𝐴)
4 ordirr 5710 . . . . . . 7 (Ord dom 𝐴 → ¬ dom 𝐴 ∈ dom 𝐴)
53, 4syl 17 . . . . . 6 (𝐴 No → ¬ dom 𝐴 ∈ dom 𝐴)
653ad2ant1 1080 . . . . 5 ((𝐴 No 𝐵 No ∧ dom 𝐴 ∈ dom 𝐵) → ¬ dom 𝐴 ∈ dom 𝐴)
7 ndmfv 6185 . . . . 5 (¬ dom 𝐴 ∈ dom 𝐴 → (𝐴‘dom 𝐴) = ∅)
86, 7syl 17 . . . 4 ((𝐴 No 𝐵 No ∧ dom 𝐴 ∈ dom 𝐵) → (𝐴‘dom 𝐴) = ∅)
9 nosgnn0 31565 . . . . . . 7 ¬ ∅ ∈ {1𝑜, 2𝑜}
10 elno3 31562 . . . . . . . . . . 11 (𝐵 No ↔ (𝐵:dom 𝐵⟶{1𝑜, 2𝑜} ∧ dom 𝐵 ∈ On))
1110simplbi 476 . . . . . . . . . 10 (𝐵 No 𝐵:dom 𝐵⟶{1𝑜, 2𝑜})
12113ad2ant2 1081 . . . . . . . . 9 ((𝐴 No 𝐵 No ∧ dom 𝐴 ∈ dom 𝐵) → 𝐵:dom 𝐵⟶{1𝑜, 2𝑜})
13 simp3 1061 . . . . . . . . 9 ((𝐴 No 𝐵 No ∧ dom 𝐴 ∈ dom 𝐵) → dom 𝐴 ∈ dom 𝐵)
1412, 13ffvelrnd 6326 . . . . . . . 8 ((𝐴 No 𝐵 No ∧ dom 𝐴 ∈ dom 𝐵) → (𝐵‘dom 𝐴) ∈ {1𝑜, 2𝑜})
15 eleq1 2686 . . . . . . . 8 ((𝐵‘dom 𝐴) = ∅ → ((𝐵‘dom 𝐴) ∈ {1𝑜, 2𝑜} ↔ ∅ ∈ {1𝑜, 2𝑜}))
1614, 15syl5ibcom 235 . . . . . . 7 ((𝐴 No 𝐵 No ∧ dom 𝐴 ∈ dom 𝐵) → ((𝐵‘dom 𝐴) = ∅ → ∅ ∈ {1𝑜, 2𝑜}))
179, 16mtoi 190 . . . . . 6 ((𝐴 No 𝐵 No ∧ dom 𝐴 ∈ dom 𝐵) → ¬ (𝐵‘dom 𝐴) = ∅)
1817neqned 2797 . . . . 5 ((𝐴 No 𝐵 No ∧ dom 𝐴 ∈ dom 𝐵) → (𝐵‘dom 𝐴) ≠ ∅)
1918necomd 2845 . . . 4 ((𝐴 No 𝐵 No ∧ dom 𝐴 ∈ dom 𝐵) → ∅ ≠ (𝐵‘dom 𝐴))
208, 19eqnetrd 2857 . . 3 ((𝐴 No 𝐵 No ∧ dom 𝐴 ∈ dom 𝐵) → (𝐴‘dom 𝐴) ≠ (𝐵‘dom 𝐴))
21 fveq2 6158 . . . . 5 (𝑥 = dom 𝐴 → (𝐴𝑥) = (𝐴‘dom 𝐴))
22 fveq2 6158 . . . . 5 (𝑥 = dom 𝐴 → (𝐵𝑥) = (𝐵‘dom 𝐴))
2321, 22neeq12d 2851 . . . 4 (𝑥 = dom 𝐴 → ((𝐴𝑥) ≠ (𝐵𝑥) ↔ (𝐴‘dom 𝐴) ≠ (𝐵‘dom 𝐴)))
2423rspcev 3299 . . 3 ((dom 𝐴 ∈ On ∧ (𝐴‘dom 𝐴) ≠ (𝐵‘dom 𝐴)) → ∃𝑥 ∈ On (𝐴𝑥) ≠ (𝐵𝑥))
252, 20, 24syl2anc 692 . 2 ((𝐴 No 𝐵 No ∧ dom 𝐴 ∈ dom 𝐵) → ∃𝑥 ∈ On (𝐴𝑥) ≠ (𝐵𝑥))
26 df-ne 2791 . . . 4 ((𝐴𝑥) ≠ (𝐵𝑥) ↔ ¬ (𝐴𝑥) = (𝐵𝑥))
2726rexbii 3036 . . 3 (∃𝑥 ∈ On (𝐴𝑥) ≠ (𝐵𝑥) ↔ ∃𝑥 ∈ On ¬ (𝐴𝑥) = (𝐵𝑥))
28 rexnal 2991 . . 3 (∃𝑥 ∈ On ¬ (𝐴𝑥) = (𝐵𝑥) ↔ ¬ ∀𝑥 ∈ On (𝐴𝑥) = (𝐵𝑥))
2927, 28bitri 264 . 2 (∃𝑥 ∈ On (𝐴𝑥) ≠ (𝐵𝑥) ↔ ¬ ∀𝑥 ∈ On (𝐴𝑥) = (𝐵𝑥))
3025, 29sylib 208 1 ((𝐴 No 𝐵 No ∧ dom 𝐴 ∈ dom 𝐵) → ¬ ∀𝑥 ∈ On (𝐴𝑥) = (𝐵𝑥))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ w3a 1036   = wceq 1480   ∈ wcel 1987   ≠ wne 2790  ∀wral 2908  ∃wrex 2909  ∅c0 3897  {cpr 4157  dom cdm 5084  Ord word 5691  Oncon0 5692  ⟶wf 5853  ‘cfv 5857  1𝑜c1o 7513  2𝑜c2o 7514   No csur 31547 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2913  df-rex 2914  df-reu 2915  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-sn 4156  df-pr 4158  df-op 4162  df-uni 4410  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-ord 5695  df-on 5696  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-1o 7520  df-2o 7521  df-no 31550 This theorem is referenced by:  nosepon  31576
 Copyright terms: Public domain W3C validator