Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nosepdm Structured version   Visualization version   GIF version

Theorem nosepdm 32111
Description: The first place two surreals differ is an element of the larger of their domains. (Contributed by Scott Fenton, 24-Nov-2021.)
Assertion
Ref Expression
nosepdm ((𝐴 No 𝐵 No 𝐴𝐵) → {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ (dom 𝐴 ∪ dom 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem nosepdm
StepHypRef Expression
1 sltso 32104 . . . 4 <s Or No
2 sotrine 31936 . . . 4 (( <s Or No ∧ (𝐴 No 𝐵 No )) → (𝐴𝐵 ↔ (𝐴 <s 𝐵𝐵 <s 𝐴)))
31, 2mpan 708 . . 3 ((𝐴 No 𝐵 No ) → (𝐴𝐵 ↔ (𝐴 <s 𝐵𝐵 <s 𝐴)))
4 nosepdmlem 32110 . . . . . 6 ((𝐴 No 𝐵 No 𝐴 <s 𝐵) → {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ (dom 𝐴 ∪ dom 𝐵))
543expa 1111 . . . . 5 (((𝐴 No 𝐵 No ) ∧ 𝐴 <s 𝐵) → {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ (dom 𝐴 ∪ dom 𝐵))
6 simplr 809 . . . . . . 7 (((𝐴 No 𝐵 No ) ∧ 𝐵 <s 𝐴) → 𝐵 No )
7 simpll 807 . . . . . . 7 (((𝐴 No 𝐵 No ) ∧ 𝐵 <s 𝐴) → 𝐴 No )
8 simpr 479 . . . . . . 7 (((𝐴 No 𝐵 No ) ∧ 𝐵 <s 𝐴) → 𝐵 <s 𝐴)
9 nosepdmlem 32110 . . . . . . 7 ((𝐵 No 𝐴 No 𝐵 <s 𝐴) → {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)} ∈ (dom 𝐵 ∪ dom 𝐴))
106, 7, 8, 9syl3anc 1463 . . . . . 6 (((𝐴 No 𝐵 No ) ∧ 𝐵 <s 𝐴) → {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)} ∈ (dom 𝐵 ∪ dom 𝐴))
11 necom 2973 . . . . . . . 8 ((𝐴𝑥) ≠ (𝐵𝑥) ↔ (𝐵𝑥) ≠ (𝐴𝑥))
1211rabbii 3313 . . . . . . 7 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} = {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}
1312inteqi 4619 . . . . . 6 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} = {𝑥 ∈ On ∣ (𝐵𝑥) ≠ (𝐴𝑥)}
14 uncom 3888 . . . . . 6 (dom 𝐴 ∪ dom 𝐵) = (dom 𝐵 ∪ dom 𝐴)
1510, 13, 143eltr4g 2844 . . . . 5 (((𝐴 No 𝐵 No ) ∧ 𝐵 <s 𝐴) → {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ (dom 𝐴 ∪ dom 𝐵))
165, 15jaodan 861 . . . 4 (((𝐴 No 𝐵 No ) ∧ (𝐴 <s 𝐵𝐵 <s 𝐴)) → {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ (dom 𝐴 ∪ dom 𝐵))
1716ex 449 . . 3 ((𝐴 No 𝐵 No ) → ((𝐴 <s 𝐵𝐵 <s 𝐴) → {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ (dom 𝐴 ∪ dom 𝐵)))
183, 17sylbid 230 . 2 ((𝐴 No 𝐵 No ) → (𝐴𝐵 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ (dom 𝐴 ∪ dom 𝐵)))
19183impia 1109 1 ((𝐴 No 𝐵 No 𝐴𝐵) → {𝑥 ∈ On ∣ (𝐴𝑥) ≠ (𝐵𝑥)} ∈ (dom 𝐴 ∪ dom 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 382  wa 383  w3a 1072  wcel 2127  wne 2920  {crab 3042  cun 3701   cint 4615   class class class wbr 4792   Or wor 5174  dom cdm 5254  Oncon0 5872  cfv 6037   No csur 32070   <s cslt 32071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-un 7102
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1623  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-ral 3043  df-rex 3044  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-pss 3719  df-nul 4047  df-if 4219  df-pw 4292  df-sn 4310  df-pr 4312  df-tp 4314  df-op 4316  df-uni 4577  df-int 4616  df-br 4793  df-opab 4853  df-mpt 4870  df-tr 4893  df-id 5162  df-eprel 5167  df-po 5175  df-so 5176  df-fr 5213  df-we 5215  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-ord 5875  df-on 5876  df-suc 5878  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-fv 6045  df-1o 7717  df-2o 7718  df-no 32073  df-slt 32074
This theorem is referenced by:  nodenselem5  32115  noresle  32123
  Copyright terms: Public domain W3C validator