![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > normval | Structured version Visualization version GIF version |
Description: The value of the norm of a vector in Hilbert space. Definition of norm in [Beran] p. 96. In the literature, the norm of 𝐴 is usually written as "|| 𝐴 ||", but we use function value notation to take advantage of our existing theorems about functions. (Contributed by NM, 29-May-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
normval | ⊢ (𝐴 ∈ ℋ → (normℎ‘𝐴) = (√‘(𝐴 ·ih 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq12 6814 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑥 = 𝐴) → (𝑥 ·ih 𝑥) = (𝐴 ·ih 𝐴)) | |
2 | 1 | anidms 680 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 ·ih 𝑥) = (𝐴 ·ih 𝐴)) |
3 | 2 | fveq2d 6348 | . 2 ⊢ (𝑥 = 𝐴 → (√‘(𝑥 ·ih 𝑥)) = (√‘(𝐴 ·ih 𝐴))) |
4 | dfhnorm2 28280 | . 2 ⊢ normℎ = (𝑥 ∈ ℋ ↦ (√‘(𝑥 ·ih 𝑥))) | |
5 | fvex 6354 | . 2 ⊢ (√‘(𝐴 ·ih 𝐴)) ∈ V | |
6 | 3, 4, 5 | fvmpt 6436 | 1 ⊢ (𝐴 ∈ ℋ → (normℎ‘𝐴) = (√‘(𝐴 ·ih 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1624 ∈ wcel 2131 ‘cfv 6041 (class class class)co 6805 √csqrt 14164 ℋchil 28077 ·ih csp 28080 normℎcno 28081 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-sep 4925 ax-nul 4933 ax-pr 5047 ax-hfi 28237 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ne 2925 df-ral 3047 df-rex 3048 df-rab 3051 df-v 3334 df-sbc 3569 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-nul 4051 df-if 4223 df-sn 4314 df-pr 4316 df-op 4320 df-uni 4581 df-br 4797 df-opab 4857 df-mpt 4874 df-id 5166 df-xp 5264 df-rel 5265 df-cnv 5266 df-co 5267 df-dm 5268 df-iota 6004 df-fun 6043 df-fn 6044 df-f 6045 df-fv 6049 df-ov 6808 df-hnorm 28126 |
This theorem is referenced by: normge0 28284 normgt0 28285 norm0 28286 normsqi 28290 norm-ii-i 28295 norm-iii-i 28297 bcsiALT 28337 |
Copyright terms: Public domain | W3C validator |