![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > normlem7 | Structured version Visualization version GIF version |
Description: Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of [Beran] p. 97. (Contributed by NM, 11-Aug-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
normlem1.1 | ⊢ 𝑆 ∈ ℂ |
normlem1.2 | ⊢ 𝐹 ∈ ℋ |
normlem1.3 | ⊢ 𝐺 ∈ ℋ |
normlem7.4 | ⊢ (abs‘𝑆) = 1 |
Ref | Expression |
---|---|
normlem7 | ⊢ (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ≤ (2 · ((√‘(𝐺 ·ih 𝐺)) · (√‘(𝐹 ·ih 𝐹)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | normlem1.1 | . . . . . 6 ⊢ 𝑆 ∈ ℂ | |
2 | normlem1.2 | . . . . . 6 ⊢ 𝐹 ∈ ℋ | |
3 | normlem1.3 | . . . . . 6 ⊢ 𝐺 ∈ ℋ | |
4 | eqid 2651 | . . . . . 6 ⊢ -(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) = -(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) | |
5 | 1, 2, 3, 4 | normlem2 28096 | . . . . 5 ⊢ -(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ∈ ℝ |
6 | 1 | cjcli 13953 | . . . . . . . 8 ⊢ (∗‘𝑆) ∈ ℂ |
7 | 2, 3 | hicli 28066 | . . . . . . . 8 ⊢ (𝐹 ·ih 𝐺) ∈ ℂ |
8 | 6, 7 | mulcli 10083 | . . . . . . 7 ⊢ ((∗‘𝑆) · (𝐹 ·ih 𝐺)) ∈ ℂ |
9 | 3, 2 | hicli 28066 | . . . . . . . 8 ⊢ (𝐺 ·ih 𝐹) ∈ ℂ |
10 | 1, 9 | mulcli 10083 | . . . . . . 7 ⊢ (𝑆 · (𝐺 ·ih 𝐹)) ∈ ℂ |
11 | 8, 10 | addcli 10082 | . . . . . 6 ⊢ (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ∈ ℂ |
12 | 11 | negrebi 10393 | . . . . 5 ⊢ (-(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ∈ ℝ ↔ (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ∈ ℝ) |
13 | 5, 12 | mpbi 220 | . . . 4 ⊢ (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ∈ ℝ |
14 | 13 | leabsi 14163 | . . 3 ⊢ (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ≤ (abs‘(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))) |
15 | 11 | absnegi 14183 | . . 3 ⊢ (abs‘-(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))) = (abs‘(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))) |
16 | 14, 15 | breqtrri 4712 | . 2 ⊢ (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ≤ (abs‘-(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))) |
17 | eqid 2651 | . . 3 ⊢ (𝐺 ·ih 𝐺) = (𝐺 ·ih 𝐺) | |
18 | eqid 2651 | . . 3 ⊢ (𝐹 ·ih 𝐹) = (𝐹 ·ih 𝐹) | |
19 | normlem7.4 | . . 3 ⊢ (abs‘𝑆) = 1 | |
20 | 1, 2, 3, 4, 17, 18, 19 | normlem6 28100 | . 2 ⊢ (abs‘-(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))) ≤ (2 · ((√‘(𝐺 ·ih 𝐺)) · (√‘(𝐹 ·ih 𝐹)))) |
21 | 11 | negcli 10387 | . . . 4 ⊢ -(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ∈ ℂ |
22 | 21 | abscli 14178 | . . 3 ⊢ (abs‘-(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))) ∈ ℝ |
23 | 2re 11128 | . . . 4 ⊢ 2 ∈ ℝ | |
24 | hiidge0 28083 | . . . . . 6 ⊢ (𝐺 ∈ ℋ → 0 ≤ (𝐺 ·ih 𝐺)) | |
25 | hiidrcl 28080 | . . . . . . . 8 ⊢ (𝐺 ∈ ℋ → (𝐺 ·ih 𝐺) ∈ ℝ) | |
26 | 3, 25 | ax-mp 5 | . . . . . . 7 ⊢ (𝐺 ·ih 𝐺) ∈ ℝ |
27 | 26 | sqrtcli 14155 | . . . . . 6 ⊢ (0 ≤ (𝐺 ·ih 𝐺) → (√‘(𝐺 ·ih 𝐺)) ∈ ℝ) |
28 | 3, 24, 27 | mp2b 10 | . . . . 5 ⊢ (√‘(𝐺 ·ih 𝐺)) ∈ ℝ |
29 | hiidge0 28083 | . . . . . 6 ⊢ (𝐹 ∈ ℋ → 0 ≤ (𝐹 ·ih 𝐹)) | |
30 | hiidrcl 28080 | . . . . . . . 8 ⊢ (𝐹 ∈ ℋ → (𝐹 ·ih 𝐹) ∈ ℝ) | |
31 | 2, 30 | ax-mp 5 | . . . . . . 7 ⊢ (𝐹 ·ih 𝐹) ∈ ℝ |
32 | 31 | sqrtcli 14155 | . . . . . 6 ⊢ (0 ≤ (𝐹 ·ih 𝐹) → (√‘(𝐹 ·ih 𝐹)) ∈ ℝ) |
33 | 2, 29, 32 | mp2b 10 | . . . . 5 ⊢ (√‘(𝐹 ·ih 𝐹)) ∈ ℝ |
34 | 28, 33 | remulcli 10092 | . . . 4 ⊢ ((√‘(𝐺 ·ih 𝐺)) · (√‘(𝐹 ·ih 𝐹))) ∈ ℝ |
35 | 23, 34 | remulcli 10092 | . . 3 ⊢ (2 · ((√‘(𝐺 ·ih 𝐺)) · (√‘(𝐹 ·ih 𝐹)))) ∈ ℝ |
36 | 13, 22, 35 | letri 10204 | . 2 ⊢ (((((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ≤ (abs‘-(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))) ∧ (abs‘-(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))) ≤ (2 · ((√‘(𝐺 ·ih 𝐺)) · (√‘(𝐹 ·ih 𝐹))))) → (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ≤ (2 · ((√‘(𝐺 ·ih 𝐺)) · (√‘(𝐹 ·ih 𝐹))))) |
37 | 16, 20, 36 | mp2an 708 | 1 ⊢ (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ≤ (2 · ((√‘(𝐺 ·ih 𝐺)) · (√‘(𝐹 ·ih 𝐹)))) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1523 ∈ wcel 2030 class class class wbr 4685 ‘cfv 5926 (class class class)co 6690 ℂcc 9972 ℝcr 9973 0cc0 9974 1c1 9975 + caddc 9977 · cmul 9979 ≤ cle 10113 -cneg 10305 2c2 11108 ∗ccj 13880 √csqrt 14017 abscabs 14018 ℋchil 27904 ·ih csp 27907 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 ax-pre-sup 10052 ax-hfvadd 27985 ax-hv0cl 27988 ax-hfvmul 27990 ax-hvmulass 27992 ax-hvmul0 27995 ax-hfi 28064 ax-his1 28067 ax-his2 28068 ax-his3 28069 ax-his4 28070 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-sup 8389 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-div 10723 df-nn 11059 df-2 11117 df-3 11118 df-4 11119 df-n0 11331 df-z 11416 df-uz 11726 df-rp 11871 df-seq 12842 df-exp 12901 df-cj 13883 df-re 13884 df-im 13885 df-sqrt 14019 df-abs 14020 df-hvsub 27956 |
This theorem is referenced by: normlem7tALT 28104 norm-ii-i 28122 |
Copyright terms: Public domain | W3C validator |