HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  normlem7 Structured version   Visualization version   GIF version

Theorem normlem7 28101
Description: Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of [Beran] p. 97. (Contributed by NM, 11-Aug-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
normlem1.1 𝑆 ∈ ℂ
normlem1.2 𝐹 ∈ ℋ
normlem1.3 𝐺 ∈ ℋ
normlem7.4 (abs‘𝑆) = 1
Assertion
Ref Expression
normlem7 (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ≤ (2 · ((√‘(𝐺 ·ih 𝐺)) · (√‘(𝐹 ·ih 𝐹))))

Proof of Theorem normlem7
StepHypRef Expression
1 normlem1.1 . . . . . 6 𝑆 ∈ ℂ
2 normlem1.2 . . . . . 6 𝐹 ∈ ℋ
3 normlem1.3 . . . . . 6 𝐺 ∈ ℋ
4 eqid 2651 . . . . . 6 -(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) = -(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))
51, 2, 3, 4normlem2 28096 . . . . 5 -(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ∈ ℝ
61cjcli 13953 . . . . . . . 8 (∗‘𝑆) ∈ ℂ
72, 3hicli 28066 . . . . . . . 8 (𝐹 ·ih 𝐺) ∈ ℂ
86, 7mulcli 10083 . . . . . . 7 ((∗‘𝑆) · (𝐹 ·ih 𝐺)) ∈ ℂ
93, 2hicli 28066 . . . . . . . 8 (𝐺 ·ih 𝐹) ∈ ℂ
101, 9mulcli 10083 . . . . . . 7 (𝑆 · (𝐺 ·ih 𝐹)) ∈ ℂ
118, 10addcli 10082 . . . . . 6 (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ∈ ℂ
1211negrebi 10393 . . . . 5 (-(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ∈ ℝ ↔ (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ∈ ℝ)
135, 12mpbi 220 . . . 4 (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ∈ ℝ
1413leabsi 14163 . . 3 (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ≤ (abs‘(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))))
1511absnegi 14183 . . 3 (abs‘-(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))) = (abs‘(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))))
1614, 15breqtrri 4712 . 2 (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ≤ (abs‘-(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))))
17 eqid 2651 . . 3 (𝐺 ·ih 𝐺) = (𝐺 ·ih 𝐺)
18 eqid 2651 . . 3 (𝐹 ·ih 𝐹) = (𝐹 ·ih 𝐹)
19 normlem7.4 . . 3 (abs‘𝑆) = 1
201, 2, 3, 4, 17, 18, 19normlem6 28100 . 2 (abs‘-(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))) ≤ (2 · ((√‘(𝐺 ·ih 𝐺)) · (√‘(𝐹 ·ih 𝐹))))
2111negcli 10387 . . . 4 -(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ∈ ℂ
2221abscli 14178 . . 3 (abs‘-(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))) ∈ ℝ
23 2re 11128 . . . 4 2 ∈ ℝ
24 hiidge0 28083 . . . . . 6 (𝐺 ∈ ℋ → 0 ≤ (𝐺 ·ih 𝐺))
25 hiidrcl 28080 . . . . . . . 8 (𝐺 ∈ ℋ → (𝐺 ·ih 𝐺) ∈ ℝ)
263, 25ax-mp 5 . . . . . . 7 (𝐺 ·ih 𝐺) ∈ ℝ
2726sqrtcli 14155 . . . . . 6 (0 ≤ (𝐺 ·ih 𝐺) → (√‘(𝐺 ·ih 𝐺)) ∈ ℝ)
283, 24, 27mp2b 10 . . . . 5 (√‘(𝐺 ·ih 𝐺)) ∈ ℝ
29 hiidge0 28083 . . . . . 6 (𝐹 ∈ ℋ → 0 ≤ (𝐹 ·ih 𝐹))
30 hiidrcl 28080 . . . . . . . 8 (𝐹 ∈ ℋ → (𝐹 ·ih 𝐹) ∈ ℝ)
312, 30ax-mp 5 . . . . . . 7 (𝐹 ·ih 𝐹) ∈ ℝ
3231sqrtcli 14155 . . . . . 6 (0 ≤ (𝐹 ·ih 𝐹) → (√‘(𝐹 ·ih 𝐹)) ∈ ℝ)
332, 29, 32mp2b 10 . . . . 5 (√‘(𝐹 ·ih 𝐹)) ∈ ℝ
3428, 33remulcli 10092 . . . 4 ((√‘(𝐺 ·ih 𝐺)) · (√‘(𝐹 ·ih 𝐹))) ∈ ℝ
3523, 34remulcli 10092 . . 3 (2 · ((√‘(𝐺 ·ih 𝐺)) · (√‘(𝐹 ·ih 𝐹)))) ∈ ℝ
3613, 22, 35letri 10204 . 2 (((((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ≤ (abs‘-(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))) ∧ (abs‘-(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))) ≤ (2 · ((√‘(𝐺 ·ih 𝐺)) · (√‘(𝐹 ·ih 𝐹))))) → (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ≤ (2 · ((√‘(𝐺 ·ih 𝐺)) · (√‘(𝐹 ·ih 𝐹)))))
3716, 20, 36mp2an 708 1 (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ≤ (2 · ((√‘(𝐺 ·ih 𝐺)) · (√‘(𝐹 ·ih 𝐹))))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1523  wcel 2030   class class class wbr 4685  cfv 5926  (class class class)co 6690  cc 9972  cr 9973  0cc0 9974  1c1 9975   + caddc 9977   · cmul 9979  cle 10113  -cneg 10305  2c2 11108  ccj 13880  csqrt 14017  abscabs 14018  chil 27904   ·ih csp 27907
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-hfvadd 27985  ax-hv0cl 27988  ax-hfvmul 27990  ax-hvmulass 27992  ax-hvmul0 27995  ax-hfi 28064  ax-his1 28067  ax-his2 28068  ax-his3 28069  ax-his4 28070
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-sup 8389  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-hvsub 27956
This theorem is referenced by:  normlem7tALT  28104  norm-ii-i  28122
  Copyright terms: Public domain W3C validator