![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > normge0 | Structured version Visualization version GIF version |
Description: The norm of a vector is nonnegative. (Contributed by NM, 29-May-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
normge0 | ⊢ (𝐴 ∈ ℋ → 0 ≤ (normℎ‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hiidrcl 28182 | . . 3 ⊢ (𝐴 ∈ ℋ → (𝐴 ·ih 𝐴) ∈ ℝ) | |
2 | hiidge0 28185 | . . 3 ⊢ (𝐴 ∈ ℋ → 0 ≤ (𝐴 ·ih 𝐴)) | |
3 | 1, 2 | sqrtge0d 14279 | . 2 ⊢ (𝐴 ∈ ℋ → 0 ≤ (√‘(𝐴 ·ih 𝐴))) |
4 | normval 28211 | . 2 ⊢ (𝐴 ∈ ℋ → (normℎ‘𝐴) = (√‘(𝐴 ·ih 𝐴))) | |
5 | 3, 4 | breqtrrd 4788 | 1 ⊢ (𝐴 ∈ ℋ → 0 ≤ (normℎ‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2103 class class class wbr 4760 ‘cfv 6001 (class class class)co 6765 0cc0 10049 ≤ cle 10188 √csqrt 14093 ℋchil 28006 ·ih csp 28009 normℎcno 28010 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-8 2105 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-sep 4889 ax-nul 4897 ax-pow 4948 ax-pr 5011 ax-un 7066 ax-cnex 10105 ax-resscn 10106 ax-1cn 10107 ax-icn 10108 ax-addcl 10109 ax-addrcl 10110 ax-mulcl 10111 ax-mulrcl 10112 ax-mulcom 10113 ax-addass 10114 ax-mulass 10115 ax-distr 10116 ax-i2m1 10117 ax-1ne0 10118 ax-1rid 10119 ax-rnegex 10120 ax-rrecex 10121 ax-cnre 10122 ax-pre-lttri 10123 ax-pre-lttrn 10124 ax-pre-ltadd 10125 ax-pre-mulgt0 10126 ax-pre-sup 10127 ax-hv0cl 28090 ax-hvmul0 28097 ax-hfi 28166 ax-his1 28169 ax-his3 28171 ax-his4 28172 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ne 2897 df-nel 3000 df-ral 3019 df-rex 3020 df-reu 3021 df-rmo 3022 df-rab 3023 df-v 3306 df-sbc 3542 df-csb 3640 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-pss 3696 df-nul 4024 df-if 4195 df-pw 4268 df-sn 4286 df-pr 4288 df-tp 4290 df-op 4292 df-uni 4545 df-iun 4630 df-br 4761 df-opab 4821 df-mpt 4838 df-tr 4861 df-id 5128 df-eprel 5133 df-po 5139 df-so 5140 df-fr 5177 df-we 5179 df-xp 5224 df-rel 5225 df-cnv 5226 df-co 5227 df-dm 5228 df-rn 5229 df-res 5230 df-ima 5231 df-pred 5793 df-ord 5839 df-on 5840 df-lim 5841 df-suc 5842 df-iota 5964 df-fun 6003 df-fn 6004 df-f 6005 df-f1 6006 df-fo 6007 df-f1o 6008 df-fv 6009 df-riota 6726 df-ov 6768 df-oprab 6769 df-mpt2 6770 df-om 7183 df-2nd 7286 df-wrecs 7527 df-recs 7588 df-rdg 7626 df-er 7862 df-en 8073 df-dom 8074 df-sdom 8075 df-sup 8464 df-pnf 10189 df-mnf 10190 df-xr 10191 df-ltxr 10192 df-le 10193 df-sub 10381 df-neg 10382 df-div 10798 df-nn 11134 df-2 11192 df-3 11193 df-n0 11406 df-z 11491 df-uz 11801 df-rp 11947 df-seq 12917 df-exp 12976 df-cj 13959 df-re 13960 df-im 13961 df-sqrt 14095 df-hnorm 28055 |
This theorem is referenced by: norm-i 28216 normpyc 28233 bcsiALT 28266 bcs2 28269 pjhthlem1 28480 chscllem2 28727 pjdifnormii 28772 pjneli 28812 nmopge0 29000 unopnorm 29006 lnconi 29122 cnlnadjlem2 29157 cnlnadjlem7 29162 nmopcoadji 29190 leopnmid 29227 pjnormssi 29257 pjssposi 29261 hstle1 29315 hstle 29319 strlem3a 29341 strlem5 29344 jplem1 29357 cdj1i 29522 cdj3lem1 29523 cdj3lem2b 29526 |
Copyright terms: Public domain | W3C validator |