![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > normcl | Structured version Visualization version GIF version |
Description: Real closure of the norm of a vector. (Contributed by NM, 29-May-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
normcl | ⊢ (𝐴 ∈ ℋ → (normℎ‘𝐴) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | normf 28287 | . 2 ⊢ normℎ: ℋ⟶ℝ | |
2 | 1 | ffvelrni 6519 | 1 ⊢ (𝐴 ∈ ℋ → (normℎ‘𝐴) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2137 ‘cfv 6047 ℝcr 10125 ℋchil 28083 normℎcno 28087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1986 ax-6 2052 ax-7 2088 ax-8 2139 ax-9 2146 ax-10 2166 ax-11 2181 ax-12 2194 ax-13 2389 ax-ext 2738 ax-sep 4931 ax-nul 4939 ax-pow 4990 ax-pr 5053 ax-un 7112 ax-cnex 10182 ax-resscn 10183 ax-1cn 10184 ax-icn 10185 ax-addcl 10186 ax-addrcl 10187 ax-mulcl 10188 ax-mulrcl 10189 ax-mulcom 10190 ax-addass 10191 ax-mulass 10192 ax-distr 10193 ax-i2m1 10194 ax-1ne0 10195 ax-1rid 10196 ax-rnegex 10197 ax-rrecex 10198 ax-cnre 10199 ax-pre-lttri 10200 ax-pre-lttrn 10201 ax-pre-ltadd 10202 ax-pre-mulgt0 10203 ax-pre-sup 10204 ax-hv0cl 28167 ax-hvmul0 28174 ax-hfi 28243 ax-his1 28246 ax-his3 28248 ax-his4 28249 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2045 df-eu 2609 df-mo 2610 df-clab 2745 df-cleq 2751 df-clel 2754 df-nfc 2889 df-ne 2931 df-nel 3034 df-ral 3053 df-rex 3054 df-reu 3055 df-rmo 3056 df-rab 3057 df-v 3340 df-sbc 3575 df-csb 3673 df-dif 3716 df-un 3718 df-in 3720 df-ss 3727 df-pss 3729 df-nul 4057 df-if 4229 df-pw 4302 df-sn 4320 df-pr 4322 df-tp 4324 df-op 4326 df-uni 4587 df-iun 4672 df-br 4803 df-opab 4863 df-mpt 4880 df-tr 4903 df-id 5172 df-eprel 5177 df-po 5185 df-so 5186 df-fr 5223 df-we 5225 df-xp 5270 df-rel 5271 df-cnv 5272 df-co 5273 df-dm 5274 df-rn 5275 df-res 5276 df-ima 5277 df-pred 5839 df-ord 5885 df-on 5886 df-lim 5887 df-suc 5888 df-iota 6010 df-fun 6049 df-fn 6050 df-f 6051 df-f1 6052 df-fo 6053 df-f1o 6054 df-fv 6055 df-riota 6772 df-ov 6814 df-oprab 6815 df-mpt2 6816 df-om 7229 df-2nd 7332 df-wrecs 7574 df-recs 7635 df-rdg 7673 df-er 7909 df-en 8120 df-dom 8121 df-sdom 8122 df-sup 8511 df-pnf 10266 df-mnf 10267 df-xr 10268 df-ltxr 10269 df-le 10270 df-sub 10458 df-neg 10459 df-div 10875 df-nn 11211 df-2 11269 df-3 11270 df-n0 11483 df-z 11568 df-uz 11878 df-rp 12024 df-seq 12994 df-exp 13053 df-cj 14036 df-re 14037 df-im 14038 df-sqrt 14172 df-hnorm 28132 |
This theorem is referenced by: norm-i 28293 normcli 28295 normpyc 28310 hhph 28342 bcs2 28346 norm1 28413 norm1exi 28414 pjhthlem1 28557 chscllem2 28804 pjige0i 28856 pjnorm2 28893 nmopsetretALT 29029 nmopub2tALT 29075 nmopge0 29077 unopnorm 29083 nmfnleub2 29092 eigvalcl 29127 nmlnop0iALT 29161 nmbdoplbi 29190 nmcexi 29192 nmcopexi 29193 nmcoplbi 29194 nmophmi 29197 lnconi 29199 lnopconi 29200 nmbdfnlbi 29215 nmcfnlbi 29218 riesz4i 29229 riesz1 29231 cnlnadjlem2 29234 cnlnadjlem7 29239 nmopadjlem 29255 nmoptrii 29260 nmopcoi 29261 nmopcoadji 29267 branmfn 29271 brabn 29272 leopnmid 29304 pjnmopi 29314 pjnormssi 29334 pjssposi 29338 hstle1 29392 hst1h 29393 hstle 29396 hstles 29397 hstoh 29398 strlem1 29416 strlem3a 29418 strlem5 29421 hstrlem6 29430 jplem1 29434 cdj1i 29599 cdj3lem1 29600 cdj3lem2b 29603 cdj3lem3b 29606 cdj3i 29607 |
Copyright terms: Public domain | W3C validator |