HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  norm3difi Structured version   Visualization version   GIF version

Theorem norm3difi 28344
Description: Norm of differences around common element. Part of Lemma 3.6 of [Beran] p. 101. (Contributed by NM, 16-Aug-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
norm3dif.1 𝐴 ∈ ℋ
norm3dif.2 𝐵 ∈ ℋ
norm3dif.3 𝐶 ∈ ℋ
Assertion
Ref Expression
norm3difi (norm‘(𝐴 𝐵)) ≤ ((norm‘(𝐴 𝐶)) + (norm‘(𝐶 𝐵)))

Proof of Theorem norm3difi
StepHypRef Expression
1 norm3dif.1 . . . . 5 𝐴 ∈ ℋ
2 norm3dif.2 . . . . 5 𝐵 ∈ ℋ
31, 2hvsubvali 28217 . . . 4 (𝐴 𝐵) = (𝐴 + (-1 · 𝐵))
4 norm3dif.3 . . . . . . 7 𝐶 ∈ ℋ
51, 4hvsubvali 28217 . . . . . 6 (𝐴 𝐶) = (𝐴 + (-1 · 𝐶))
64, 2hvsubvali 28217 . . . . . 6 (𝐶 𝐵) = (𝐶 + (-1 · 𝐵))
75, 6oveq12i 6805 . . . . 5 ((𝐴 𝐶) + (𝐶 𝐵)) = ((𝐴 + (-1 · 𝐶)) + (𝐶 + (-1 · 𝐵)))
8 neg1cn 11326 . . . . . . 7 -1 ∈ ℂ
98, 4hvmulcli 28211 . . . . . 6 (-1 · 𝐶) ∈ ℋ
108, 2hvmulcli 28211 . . . . . . 7 (-1 · 𝐵) ∈ ℋ
114, 10hvaddcli 28215 . . . . . 6 (𝐶 + (-1 · 𝐵)) ∈ ℋ
121, 9, 11hvassi 28250 . . . . 5 ((𝐴 + (-1 · 𝐶)) + (𝐶 + (-1 · 𝐵))) = (𝐴 + ((-1 · 𝐶) + (𝐶 + (-1 · 𝐵))))
139, 4, 10hvassi 28250 . . . . . . 7 (((-1 · 𝐶) + 𝐶) + (-1 · 𝐵)) = ((-1 · 𝐶) + (𝐶 + (-1 · 𝐵)))
149, 4hvcomi 28216 . . . . . . . . . 10 ((-1 · 𝐶) + 𝐶) = (𝐶 + (-1 · 𝐶))
154, 4hvsubvali 28217 . . . . . . . . . 10 (𝐶 𝐶) = (𝐶 + (-1 · 𝐶))
16 hvsubid 28223 . . . . . . . . . . 11 (𝐶 ∈ ℋ → (𝐶 𝐶) = 0)
174, 16ax-mp 5 . . . . . . . . . 10 (𝐶 𝐶) = 0
1814, 15, 173eqtr2i 2799 . . . . . . . . 9 ((-1 · 𝐶) + 𝐶) = 0
1918oveq1i 6803 . . . . . . . 8 (((-1 · 𝐶) + 𝐶) + (-1 · 𝐵)) = (0 + (-1 · 𝐵))
20 ax-hv0cl 28200 . . . . . . . . 9 0 ∈ ℋ
2120, 10hvcomi 28216 . . . . . . . 8 (0 + (-1 · 𝐵)) = ((-1 · 𝐵) + 0)
22 ax-hvaddid 28201 . . . . . . . . 9 ((-1 · 𝐵) ∈ ℋ → ((-1 · 𝐵) + 0) = (-1 · 𝐵))
2310, 22ax-mp 5 . . . . . . . 8 ((-1 · 𝐵) + 0) = (-1 · 𝐵)
2419, 21, 233eqtri 2797 . . . . . . 7 (((-1 · 𝐶) + 𝐶) + (-1 · 𝐵)) = (-1 · 𝐵)
2513, 24eqtr3i 2795 . . . . . 6 ((-1 · 𝐶) + (𝐶 + (-1 · 𝐵))) = (-1 · 𝐵)
2625oveq2i 6804 . . . . 5 (𝐴 + ((-1 · 𝐶) + (𝐶 + (-1 · 𝐵)))) = (𝐴 + (-1 · 𝐵))
277, 12, 263eqtri 2797 . . . 4 ((𝐴 𝐶) + (𝐶 𝐵)) = (𝐴 + (-1 · 𝐵))
283, 27eqtr4i 2796 . . 3 (𝐴 𝐵) = ((𝐴 𝐶) + (𝐶 𝐵))
2928fveq2i 6335 . 2 (norm‘(𝐴 𝐵)) = (norm‘((𝐴 𝐶) + (𝐶 𝐵)))
301, 4hvsubcli 28218 . . 3 (𝐴 𝐶) ∈ ℋ
314, 2hvsubcli 28218 . . 3 (𝐶 𝐵) ∈ ℋ
3230, 31norm-ii-i 28334 . 2 (norm‘((𝐴 𝐶) + (𝐶 𝐵))) ≤ ((norm‘(𝐴 𝐶)) + (norm‘(𝐶 𝐵)))
3329, 32eqbrtri 4807 1 (norm‘(𝐴 𝐵)) ≤ ((norm‘(𝐴 𝐶)) + (norm‘(𝐶 𝐵)))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1631  wcel 2145   class class class wbr 4786  cfv 6031  (class class class)co 6793  1c1 10139   + caddc 10141  cle 10277  -cneg 10469  chil 28116   + cva 28117   · csm 28118  normcno 28120  0c0v 28121   cmv 28122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216  ax-hfvadd 28197  ax-hvcom 28198  ax-hvass 28199  ax-hv0cl 28200  ax-hvaddid 28201  ax-hfvmul 28202  ax-hvmulid 28203  ax-hvmulass 28204  ax-hvdistr2 28206  ax-hvmul0 28207  ax-hfi 28276  ax-his1 28279  ax-his2 28280  ax-his3 28281  ax-his4 28282
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-sup 8504  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-4 11283  df-n0 11495  df-z 11580  df-uz 11889  df-rp 12036  df-seq 13009  df-exp 13068  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-hnorm 28165  df-hvsub 28168
This theorem is referenced by:  norm3adifii  28345  norm3lem  28346  norm3dif  28347
  Copyright terms: Public domain W3C validator