HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  norm1exi Structured version   Visualization version   GIF version

Theorem norm1exi 28235
Description: A normalized vector exists in a subspace iff the subspace has a nonzero vector. (Contributed by NM, 9-Apr-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
norm1ex.1 𝐻S
Assertion
Ref Expression
norm1exi (∃𝑥𝐻 𝑥 ≠ 0 ↔ ∃𝑦𝐻 (norm𝑦) = 1)
Distinct variable groups:   𝑥,𝐻   𝑦,𝐻

Proof of Theorem norm1exi
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 neeq1 2885 . . 3 (𝑥 = 𝑧 → (𝑥 ≠ 0𝑧 ≠ 0))
21cbvrexv 3202 . 2 (∃𝑥𝐻 𝑥 ≠ 0 ↔ ∃𝑧𝐻 𝑧 ≠ 0)
3 norm1ex.1 . . . . . . . . . . 11 𝐻S
43sheli 28199 . . . . . . . . . 10 (𝑧𝐻𝑧 ∈ ℋ)
5 normcl 28110 . . . . . . . . . 10 (𝑧 ∈ ℋ → (norm𝑧) ∈ ℝ)
64, 5syl 17 . . . . . . . . 9 (𝑧𝐻 → (norm𝑧) ∈ ℝ)
76adantr 480 . . . . . . . 8 ((𝑧𝐻𝑧 ≠ 0) → (norm𝑧) ∈ ℝ)
8 normne0 28115 . . . . . . . . . 10 (𝑧 ∈ ℋ → ((norm𝑧) ≠ 0 ↔ 𝑧 ≠ 0))
94, 8syl 17 . . . . . . . . 9 (𝑧𝐻 → ((norm𝑧) ≠ 0 ↔ 𝑧 ≠ 0))
109biimpar 501 . . . . . . . 8 ((𝑧𝐻𝑧 ≠ 0) → (norm𝑧) ≠ 0)
117, 10rereccld 10890 . . . . . . 7 ((𝑧𝐻𝑧 ≠ 0) → (1 / (norm𝑧)) ∈ ℝ)
1211recnd 10106 . . . . . 6 ((𝑧𝐻𝑧 ≠ 0) → (1 / (norm𝑧)) ∈ ℂ)
13 simpl 472 . . . . . 6 ((𝑧𝐻𝑧 ≠ 0) → 𝑧𝐻)
14 shmulcl 28203 . . . . . . 7 ((𝐻S ∧ (1 / (norm𝑧)) ∈ ℂ ∧ 𝑧𝐻) → ((1 / (norm𝑧)) · 𝑧) ∈ 𝐻)
153, 14mp3an1 1451 . . . . . 6 (((1 / (norm𝑧)) ∈ ℂ ∧ 𝑧𝐻) → ((1 / (norm𝑧)) · 𝑧) ∈ 𝐻)
1612, 13, 15syl2anc 694 . . . . 5 ((𝑧𝐻𝑧 ≠ 0) → ((1 / (norm𝑧)) · 𝑧) ∈ 𝐻)
17 norm1 28234 . . . . . 6 ((𝑧 ∈ ℋ ∧ 𝑧 ≠ 0) → (norm‘((1 / (norm𝑧)) · 𝑧)) = 1)
184, 17sylan 487 . . . . 5 ((𝑧𝐻𝑧 ≠ 0) → (norm‘((1 / (norm𝑧)) · 𝑧)) = 1)
19 fveq2 6229 . . . . . . 7 (𝑦 = ((1 / (norm𝑧)) · 𝑧) → (norm𝑦) = (norm‘((1 / (norm𝑧)) · 𝑧)))
2019eqeq1d 2653 . . . . . 6 (𝑦 = ((1 / (norm𝑧)) · 𝑧) → ((norm𝑦) = 1 ↔ (norm‘((1 / (norm𝑧)) · 𝑧)) = 1))
2120rspcev 3340 . . . . 5 ((((1 / (norm𝑧)) · 𝑧) ∈ 𝐻 ∧ (norm‘((1 / (norm𝑧)) · 𝑧)) = 1) → ∃𝑦𝐻 (norm𝑦) = 1)
2216, 18, 21syl2anc 694 . . . 4 ((𝑧𝐻𝑧 ≠ 0) → ∃𝑦𝐻 (norm𝑦) = 1)
2322rexlimiva 3057 . . 3 (∃𝑧𝐻 𝑧 ≠ 0 → ∃𝑦𝐻 (norm𝑦) = 1)
24 ax-1ne0 10043 . . . . . . . 8 1 ≠ 0
2524neii 2825 . . . . . . 7 ¬ 1 = 0
26 eqeq1 2655 . . . . . . 7 ((norm𝑦) = 1 → ((norm𝑦) = 0 ↔ 1 = 0))
2725, 26mtbiri 316 . . . . . 6 ((norm𝑦) = 1 → ¬ (norm𝑦) = 0)
283sheli 28199 . . . . . . . 8 (𝑦𝐻𝑦 ∈ ℋ)
29 norm-i 28114 . . . . . . . 8 (𝑦 ∈ ℋ → ((norm𝑦) = 0 ↔ 𝑦 = 0))
3028, 29syl 17 . . . . . . 7 (𝑦𝐻 → ((norm𝑦) = 0 ↔ 𝑦 = 0))
3130necon3bbid 2860 . . . . . 6 (𝑦𝐻 → (¬ (norm𝑦) = 0 ↔ 𝑦 ≠ 0))
3227, 31syl5ib 234 . . . . 5 (𝑦𝐻 → ((norm𝑦) = 1 → 𝑦 ≠ 0))
3332reximia 3038 . . . 4 (∃𝑦𝐻 (norm𝑦) = 1 → ∃𝑦𝐻 𝑦 ≠ 0)
34 neeq1 2885 . . . . 5 (𝑦 = 𝑧 → (𝑦 ≠ 0𝑧 ≠ 0))
3534cbvrexv 3202 . . . 4 (∃𝑦𝐻 𝑦 ≠ 0 ↔ ∃𝑧𝐻 𝑧 ≠ 0)
3633, 35sylib 208 . . 3 (∃𝑦𝐻 (norm𝑦) = 1 → ∃𝑧𝐻 𝑧 ≠ 0)
3723, 36impbii 199 . 2 (∃𝑧𝐻 𝑧 ≠ 0 ↔ ∃𝑦𝐻 (norm𝑦) = 1)
382, 37bitri 264 1 (∃𝑥𝐻 𝑥 ≠ 0 ↔ ∃𝑦𝐻 (norm𝑦) = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 196  wa 383   = wceq 1523  wcel 2030  wne 2823  wrex 2942  cfv 5926  (class class class)co 6690  cc 9972  cr 9973  0cc0 9974  1c1 9975   / cdiv 10722  chil 27904   · csm 27906  normcno 27908  0c0v 27909   S csh 27913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-hilex 27984  ax-hfvadd 27985  ax-hv0cl 27988  ax-hfvmul 27990  ax-hvmul0 27995  ax-hfi 28064  ax-his1 28067  ax-his3 28069  ax-his4 28070
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-sup 8389  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-hnorm 27953  df-sh 28192
This theorem is referenced by:  norm1hex  28236  pjnmopi  29135
  Copyright terms: Public domain W3C validator