![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > norm-iii | Structured version Visualization version GIF version |
Description: Theorem 3.3(iii) of [Beran] p. 97. (Contributed by NM, 25-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
norm-iii | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (normℎ‘(𝐴 ·ℎ 𝐵)) = ((abs‘𝐴) · (normℎ‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvoveq1 6819 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → (normℎ‘(𝐴 ·ℎ 𝐵)) = (normℎ‘(if(𝐴 ∈ ℂ, 𝐴, 0) ·ℎ 𝐵))) | |
2 | fveq2 6333 | . . . 4 ⊢ (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → (abs‘𝐴) = (abs‘if(𝐴 ∈ ℂ, 𝐴, 0))) | |
3 | 2 | oveq1d 6811 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → ((abs‘𝐴) · (normℎ‘𝐵)) = ((abs‘if(𝐴 ∈ ℂ, 𝐴, 0)) · (normℎ‘𝐵))) |
4 | 1, 3 | eqeq12d 2786 | . 2 ⊢ (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → ((normℎ‘(𝐴 ·ℎ 𝐵)) = ((abs‘𝐴) · (normℎ‘𝐵)) ↔ (normℎ‘(if(𝐴 ∈ ℂ, 𝐴, 0) ·ℎ 𝐵)) = ((abs‘if(𝐴 ∈ ℂ, 𝐴, 0)) · (normℎ‘𝐵)))) |
5 | oveq2 6804 | . . . 4 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (if(𝐴 ∈ ℂ, 𝐴, 0) ·ℎ 𝐵) = (if(𝐴 ∈ ℂ, 𝐴, 0) ·ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) | |
6 | 5 | fveq2d 6337 | . . 3 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (normℎ‘(if(𝐴 ∈ ℂ, 𝐴, 0) ·ℎ 𝐵)) = (normℎ‘(if(𝐴 ∈ ℂ, 𝐴, 0) ·ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ)))) |
7 | fveq2 6333 | . . . 4 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (normℎ‘𝐵) = (normℎ‘if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) | |
8 | 7 | oveq2d 6812 | . . 3 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → ((abs‘if(𝐴 ∈ ℂ, 𝐴, 0)) · (normℎ‘𝐵)) = ((abs‘if(𝐴 ∈ ℂ, 𝐴, 0)) · (normℎ‘if(𝐵 ∈ ℋ, 𝐵, 0ℎ)))) |
9 | 6, 8 | eqeq12d 2786 | . 2 ⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → ((normℎ‘(if(𝐴 ∈ ℂ, 𝐴, 0) ·ℎ 𝐵)) = ((abs‘if(𝐴 ∈ ℂ, 𝐴, 0)) · (normℎ‘𝐵)) ↔ (normℎ‘(if(𝐴 ∈ ℂ, 𝐴, 0) ·ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) = ((abs‘if(𝐴 ∈ ℂ, 𝐴, 0)) · (normℎ‘if(𝐵 ∈ ℋ, 𝐵, 0ℎ))))) |
10 | 0cn 10238 | . . . 4 ⊢ 0 ∈ ℂ | |
11 | 10 | elimel 4290 | . . 3 ⊢ if(𝐴 ∈ ℂ, 𝐴, 0) ∈ ℂ |
12 | ifhvhv0 28219 | . . 3 ⊢ if(𝐵 ∈ ℋ, 𝐵, 0ℎ) ∈ ℋ | |
13 | 11, 12 | norm-iii-i 28336 | . 2 ⊢ (normℎ‘(if(𝐴 ∈ ℂ, 𝐴, 0) ·ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) = ((abs‘if(𝐴 ∈ ℂ, 𝐴, 0)) · (normℎ‘if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) |
14 | 4, 9, 13 | dedth2h 4280 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (normℎ‘(𝐴 ·ℎ 𝐵)) = ((abs‘𝐴) · (normℎ‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ifcif 4226 ‘cfv 6030 (class class class)co 6796 ℂcc 10140 0cc0 10142 · cmul 10147 abscabs 14182 ℋchil 28116 ·ℎ csm 28118 normℎcno 28120 0ℎc0v 28121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 ax-cnex 10198 ax-resscn 10199 ax-1cn 10200 ax-icn 10201 ax-addcl 10202 ax-addrcl 10203 ax-mulcl 10204 ax-mulrcl 10205 ax-mulcom 10206 ax-addass 10207 ax-mulass 10208 ax-distr 10209 ax-i2m1 10210 ax-1ne0 10211 ax-1rid 10212 ax-rnegex 10213 ax-rrecex 10214 ax-cnre 10215 ax-pre-lttri 10216 ax-pre-lttrn 10217 ax-pre-ltadd 10218 ax-pre-mulgt0 10219 ax-pre-sup 10220 ax-hv0cl 28200 ax-hfvmul 28202 ax-hvmul0 28207 ax-hfi 28276 ax-his1 28279 ax-his3 28281 ax-his4 28282 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4576 df-iun 4657 df-br 4788 df-opab 4848 df-mpt 4865 df-tr 4888 df-id 5158 df-eprel 5163 df-po 5171 df-so 5172 df-fr 5209 df-we 5211 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-pred 5822 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-riota 6757 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-om 7217 df-2nd 7320 df-wrecs 7563 df-recs 7625 df-rdg 7663 df-er 7900 df-en 8114 df-dom 8115 df-sdom 8116 df-sup 8508 df-pnf 10282 df-mnf 10283 df-xr 10284 df-ltxr 10285 df-le 10286 df-sub 10474 df-neg 10475 df-div 10891 df-nn 11227 df-2 11285 df-3 11286 df-n0 11500 df-z 11585 df-uz 11894 df-rp 12036 df-seq 13009 df-exp 13068 df-cj 14047 df-re 14048 df-im 14049 df-sqrt 14183 df-abs 14184 df-hnorm 28165 |
This theorem is referenced by: hhnv 28362 norm1 28446 hhssnv 28461 nmbdoplbi 29223 nmcexi 29225 nmcopexi 29226 nmcoplbi 29227 nmophmi 29230 nmopcoi 29294 strlem1 29449 |
Copyright terms: Public domain | W3C validator |