HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  norm-iii Structured version   Visualization version   GIF version

Theorem norm-iii 28337
Description: Theorem 3.3(iii) of [Beran] p. 97. (Contributed by NM, 25-Oct-1999.) (New usage is discouraged.)
Assertion
Ref Expression
norm-iii ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (norm‘(𝐴 · 𝐵)) = ((abs‘𝐴) · (norm𝐵)))

Proof of Theorem norm-iii
StepHypRef Expression
1 fvoveq1 6819 . . 3 (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → (norm‘(𝐴 · 𝐵)) = (norm‘(if(𝐴 ∈ ℂ, 𝐴, 0) · 𝐵)))
2 fveq2 6333 . . . 4 (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → (abs‘𝐴) = (abs‘if(𝐴 ∈ ℂ, 𝐴, 0)))
32oveq1d 6811 . . 3 (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → ((abs‘𝐴) · (norm𝐵)) = ((abs‘if(𝐴 ∈ ℂ, 𝐴, 0)) · (norm𝐵)))
41, 3eqeq12d 2786 . 2 (𝐴 = if(𝐴 ∈ ℂ, 𝐴, 0) → ((norm‘(𝐴 · 𝐵)) = ((abs‘𝐴) · (norm𝐵)) ↔ (norm‘(if(𝐴 ∈ ℂ, 𝐴, 0) · 𝐵)) = ((abs‘if(𝐴 ∈ ℂ, 𝐴, 0)) · (norm𝐵))))
5 oveq2 6804 . . . 4 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (if(𝐴 ∈ ℂ, 𝐴, 0) · 𝐵) = (if(𝐴 ∈ ℂ, 𝐴, 0) · if(𝐵 ∈ ℋ, 𝐵, 0)))
65fveq2d 6337 . . 3 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (norm‘(if(𝐴 ∈ ℂ, 𝐴, 0) · 𝐵)) = (norm‘(if(𝐴 ∈ ℂ, 𝐴, 0) · if(𝐵 ∈ ℋ, 𝐵, 0))))
7 fveq2 6333 . . . 4 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → (norm𝐵) = (norm‘if(𝐵 ∈ ℋ, 𝐵, 0)))
87oveq2d 6812 . . 3 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((abs‘if(𝐴 ∈ ℂ, 𝐴, 0)) · (norm𝐵)) = ((abs‘if(𝐴 ∈ ℂ, 𝐴, 0)) · (norm‘if(𝐵 ∈ ℋ, 𝐵, 0))))
96, 8eqeq12d 2786 . 2 (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0) → ((norm‘(if(𝐴 ∈ ℂ, 𝐴, 0) · 𝐵)) = ((abs‘if(𝐴 ∈ ℂ, 𝐴, 0)) · (norm𝐵)) ↔ (norm‘(if(𝐴 ∈ ℂ, 𝐴, 0) · if(𝐵 ∈ ℋ, 𝐵, 0))) = ((abs‘if(𝐴 ∈ ℂ, 𝐴, 0)) · (norm‘if(𝐵 ∈ ℋ, 𝐵, 0)))))
10 0cn 10238 . . . 4 0 ∈ ℂ
1110elimel 4290 . . 3 if(𝐴 ∈ ℂ, 𝐴, 0) ∈ ℂ
12 ifhvhv0 28219 . . 3 if(𝐵 ∈ ℋ, 𝐵, 0) ∈ ℋ
1311, 12norm-iii-i 28336 . 2 (norm‘(if(𝐴 ∈ ℂ, 𝐴, 0) · if(𝐵 ∈ ℋ, 𝐵, 0))) = ((abs‘if(𝐴 ∈ ℂ, 𝐴, 0)) · (norm‘if(𝐵 ∈ ℋ, 𝐵, 0)))
144, 9, 13dedth2h 4280 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (norm‘(𝐴 · 𝐵)) = ((abs‘𝐴) · (norm𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wcel 2145  ifcif 4226  cfv 6030  (class class class)co 6796  cc 10140  0cc0 10142   · cmul 10147  abscabs 14182  chil 28116   · csm 28118  normcno 28120  0c0v 28121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219  ax-pre-sup 10220  ax-hv0cl 28200  ax-hfvmul 28202  ax-hvmul0 28207  ax-hfi 28276  ax-his1 28279  ax-his3 28281  ax-his4 28282
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-om 7217  df-2nd 7320  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-er 7900  df-en 8114  df-dom 8115  df-sdom 8116  df-sup 8508  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-div 10891  df-nn 11227  df-2 11285  df-3 11286  df-n0 11500  df-z 11585  df-uz 11894  df-rp 12036  df-seq 13009  df-exp 13068  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-hnorm 28165
This theorem is referenced by:  hhnv  28362  norm1  28446  hhssnv  28461  nmbdoplbi  29223  nmcexi  29225  nmcopexi  29226  nmcoplbi  29227  nmophmi  29230  nmopcoi  29294  strlem1  29449
  Copyright terms: Public domain W3C validator