![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nolt02olem | Structured version Visualization version GIF version |
Description: Lemma for nolt02o 31970. If 𝐴(𝑋) is undefined with 𝐴 surreal and 𝑋 ordinal, then dom 𝐴 ⊆ 𝑋. (Contributed by Scott Fenton, 6-Dec-2021.) |
Ref | Expression |
---|---|
nolt02olem | ⊢ ((𝐴 ∈ No ∧ 𝑋 ∈ On ∧ (𝐴‘𝑋) = ∅) → dom 𝐴 ⊆ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nosgnn0 31936 | . . . 4 ⊢ ¬ ∅ ∈ {1𝑜, 2𝑜} | |
2 | 1 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝑋 ∈ On ∧ (𝐴‘𝑋) = ∅) → ¬ ∅ ∈ {1𝑜, 2𝑜}) |
3 | simpl3 1086 | . . . 4 ⊢ (((𝐴 ∈ No ∧ 𝑋 ∈ On ∧ (𝐴‘𝑋) = ∅) ∧ 𝑋 ∈ dom 𝐴) → (𝐴‘𝑋) = ∅) | |
4 | simpl1 1084 | . . . . . 6 ⊢ (((𝐴 ∈ No ∧ 𝑋 ∈ On ∧ (𝐴‘𝑋) = ∅) ∧ 𝑋 ∈ dom 𝐴) → 𝐴 ∈ No ) | |
5 | norn 31929 | . . . . . 6 ⊢ (𝐴 ∈ No → ran 𝐴 ⊆ {1𝑜, 2𝑜}) | |
6 | 4, 5 | syl 17 | . . . . 5 ⊢ (((𝐴 ∈ No ∧ 𝑋 ∈ On ∧ (𝐴‘𝑋) = ∅) ∧ 𝑋 ∈ dom 𝐴) → ran 𝐴 ⊆ {1𝑜, 2𝑜}) |
7 | nofun 31927 | . . . . . . 7 ⊢ (𝐴 ∈ No → Fun 𝐴) | |
8 | 7 | 3ad2ant1 1102 | . . . . . 6 ⊢ ((𝐴 ∈ No ∧ 𝑋 ∈ On ∧ (𝐴‘𝑋) = ∅) → Fun 𝐴) |
9 | fvelrn 6392 | . . . . . 6 ⊢ ((Fun 𝐴 ∧ 𝑋 ∈ dom 𝐴) → (𝐴‘𝑋) ∈ ran 𝐴) | |
10 | 8, 9 | sylan 487 | . . . . 5 ⊢ (((𝐴 ∈ No ∧ 𝑋 ∈ On ∧ (𝐴‘𝑋) = ∅) ∧ 𝑋 ∈ dom 𝐴) → (𝐴‘𝑋) ∈ ran 𝐴) |
11 | 6, 10 | sseldd 3637 | . . . 4 ⊢ (((𝐴 ∈ No ∧ 𝑋 ∈ On ∧ (𝐴‘𝑋) = ∅) ∧ 𝑋 ∈ dom 𝐴) → (𝐴‘𝑋) ∈ {1𝑜, 2𝑜}) |
12 | 3, 11 | eqeltrrd 2731 | . . 3 ⊢ (((𝐴 ∈ No ∧ 𝑋 ∈ On ∧ (𝐴‘𝑋) = ∅) ∧ 𝑋 ∈ dom 𝐴) → ∅ ∈ {1𝑜, 2𝑜}) |
13 | 2, 12 | mtand 692 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝑋 ∈ On ∧ (𝐴‘𝑋) = ∅) → ¬ 𝑋 ∈ dom 𝐴) |
14 | nodmon 31928 | . . . 4 ⊢ (𝐴 ∈ No → dom 𝐴 ∈ On) | |
15 | 14 | 3ad2ant1 1102 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝑋 ∈ On ∧ (𝐴‘𝑋) = ∅) → dom 𝐴 ∈ On) |
16 | simp2 1082 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝑋 ∈ On ∧ (𝐴‘𝑋) = ∅) → 𝑋 ∈ On) | |
17 | ontri1 5795 | . . 3 ⊢ ((dom 𝐴 ∈ On ∧ 𝑋 ∈ On) → (dom 𝐴 ⊆ 𝑋 ↔ ¬ 𝑋 ∈ dom 𝐴)) | |
18 | 15, 16, 17 | syl2anc 694 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝑋 ∈ On ∧ (𝐴‘𝑋) = ∅) → (dom 𝐴 ⊆ 𝑋 ↔ ¬ 𝑋 ∈ dom 𝐴)) |
19 | 13, 18 | mpbird 247 | 1 ⊢ ((𝐴 ∈ No ∧ 𝑋 ∈ On ∧ (𝐴‘𝑋) = ∅) → dom 𝐴 ⊆ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 383 ∧ w3a 1054 = wceq 1523 ∈ wcel 2030 ⊆ wss 3607 ∅c0 3948 {cpr 4212 dom cdm 5143 ran crn 5144 Oncon0 5761 Fun wfun 5920 ‘cfv 5926 1𝑜c1o 7598 2𝑜c2o 7599 No csur 31918 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-ord 5764 df-on 5765 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-1o 7605 df-2o 7606 df-no 31921 |
This theorem is referenced by: nolt02o 31970 |
Copyright terms: Public domain | W3C validator |