Step | Hyp | Ref
| Expression |
1 | | simp11 1222 |
. . . . 5
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴‘𝑋) = ∅) → 𝐴 ∈ No
) |
2 | | sltso 32054 |
. . . . . 6
⊢ <s Or
No |
3 | | sonr 5160 |
. . . . . 6
⊢ (( <s
Or No ∧ 𝐴 ∈ No )
→ ¬ 𝐴 <s 𝐴) |
4 | 2, 3 | mpan 708 |
. . . . 5
⊢ (𝐴 ∈
No → ¬ 𝐴
<s 𝐴) |
5 | 1, 4 | syl 17 |
. . . 4
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴‘𝑋) = ∅) → ¬ 𝐴 <s 𝐴) |
6 | | simp2r 1219 |
. . . . 5
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴‘𝑋) = ∅) → 𝐴 <s 𝐵) |
7 | | breq2 4764 |
. . . . 5
⊢ (𝐴 = 𝐵 → (𝐴 <s 𝐴 ↔ 𝐴 <s 𝐵)) |
8 | 6, 7 | syl5ibrcom 237 |
. . . 4
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴‘𝑋) = ∅) → (𝐴 = 𝐵 → 𝐴 <s 𝐴)) |
9 | 5, 8 | mtod 189 |
. . 3
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴‘𝑋) = ∅) → ¬ 𝐴 = 𝐵) |
10 | | simpl2l 1259 |
. . . 4
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴‘𝑋) = ∅) ∧ (𝐵‘𝑋) = ∅) → (𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋)) |
11 | | simpl11 1285 |
. . . . . 6
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴‘𝑋) = ∅) ∧ (𝐵‘𝑋) = ∅) → 𝐴 ∈ No
) |
12 | | nofun 32029 |
. . . . . 6
⊢ (𝐴 ∈
No → Fun 𝐴) |
13 | | funrel 6018 |
. . . . . 6
⊢ (Fun
𝐴 → Rel 𝐴) |
14 | 11, 12, 13 | 3syl 18 |
. . . . 5
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴‘𝑋) = ∅) ∧ (𝐵‘𝑋) = ∅) → Rel 𝐴) |
15 | | simpl13 1287 |
. . . . . 6
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴‘𝑋) = ∅) ∧ (𝐵‘𝑋) = ∅) → 𝑋 ∈ On) |
16 | | simpl3 1208 |
. . . . . 6
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴‘𝑋) = ∅) ∧ (𝐵‘𝑋) = ∅) → (𝐴‘𝑋) = ∅) |
17 | | nolt02olem 32071 |
. . . . . 6
⊢ ((𝐴 ∈
No ∧ 𝑋 ∈
On ∧ (𝐴‘𝑋) = ∅) → dom 𝐴 ⊆ 𝑋) |
18 | 11, 15, 16, 17 | syl3anc 1439 |
. . . . 5
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴‘𝑋) = ∅) ∧ (𝐵‘𝑋) = ∅) → dom 𝐴 ⊆ 𝑋) |
19 | | relssres 5547 |
. . . . 5
⊢ ((Rel
𝐴 ∧ dom 𝐴 ⊆ 𝑋) → (𝐴 ↾ 𝑋) = 𝐴) |
20 | 14, 18, 19 | syl2anc 696 |
. . . 4
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴‘𝑋) = ∅) ∧ (𝐵‘𝑋) = ∅) → (𝐴 ↾ 𝑋) = 𝐴) |
21 | | simpl12 1286 |
. . . . . 6
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴‘𝑋) = ∅) ∧ (𝐵‘𝑋) = ∅) → 𝐵 ∈ No
) |
22 | | nofun 32029 |
. . . . . 6
⊢ (𝐵 ∈
No → Fun 𝐵) |
23 | | funrel 6018 |
. . . . . 6
⊢ (Fun
𝐵 → Rel 𝐵) |
24 | 21, 22, 23 | 3syl 18 |
. . . . 5
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴‘𝑋) = ∅) ∧ (𝐵‘𝑋) = ∅) → Rel 𝐵) |
25 | | simpr 479 |
. . . . . 6
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴‘𝑋) = ∅) ∧ (𝐵‘𝑋) = ∅) → (𝐵‘𝑋) = ∅) |
26 | | nolt02olem 32071 |
. . . . . 6
⊢ ((𝐵 ∈
No ∧ 𝑋 ∈
On ∧ (𝐵‘𝑋) = ∅) → dom 𝐵 ⊆ 𝑋) |
27 | 21, 15, 25, 26 | syl3anc 1439 |
. . . . 5
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴‘𝑋) = ∅) ∧ (𝐵‘𝑋) = ∅) → dom 𝐵 ⊆ 𝑋) |
28 | | relssres 5547 |
. . . . 5
⊢ ((Rel
𝐵 ∧ dom 𝐵 ⊆ 𝑋) → (𝐵 ↾ 𝑋) = 𝐵) |
29 | 24, 27, 28 | syl2anc 696 |
. . . 4
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴‘𝑋) = ∅) ∧ (𝐵‘𝑋) = ∅) → (𝐵 ↾ 𝑋) = 𝐵) |
30 | 10, 20, 29 | 3eqtr3d 2766 |
. . 3
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴‘𝑋) = ∅) ∧ (𝐵‘𝑋) = ∅) → 𝐴 = 𝐵) |
31 | 9, 30 | mtand 694 |
. 2
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴‘𝑋) = ∅) → ¬ (𝐵‘𝑋) = ∅) |
32 | | simp12 1223 |
. . . . . 6
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴‘𝑋) = ∅) → 𝐵 ∈ No
) |
33 | | sltval 32027 |
. . . . . 6
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ) → (𝐴 <s 𝐵 ↔ ∃𝑥 ∈ On (∀𝑦 ∈ 𝑥 (𝐴‘𝑦) = (𝐵‘𝑦) ∧ (𝐴‘𝑥){〈1𝑜, ∅〉,
〈1𝑜, 2𝑜〉, 〈∅,
2𝑜〉} (𝐵‘𝑥)))) |
34 | 1, 32, 33 | syl2anc 696 |
. . . . 5
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴‘𝑋) = ∅) → (𝐴 <s 𝐵 ↔ ∃𝑥 ∈ On (∀𝑦 ∈ 𝑥 (𝐴‘𝑦) = (𝐵‘𝑦) ∧ (𝐴‘𝑥){〈1𝑜, ∅〉,
〈1𝑜, 2𝑜〉, 〈∅,
2𝑜〉} (𝐵‘𝑥)))) |
35 | 6, 34 | mpbid 222 |
. . . 4
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴‘𝑋) = ∅) → ∃𝑥 ∈ On (∀𝑦 ∈ 𝑥 (𝐴‘𝑦) = (𝐵‘𝑦) ∧ (𝐴‘𝑥){〈1𝑜, ∅〉,
〈1𝑜, 2𝑜〉, 〈∅,
2𝑜〉} (𝐵‘𝑥))) |
36 | | df-an 385 |
. . . . . 6
⊢
((∀𝑦 ∈
𝑥 (𝐴‘𝑦) = (𝐵‘𝑦) ∧ (𝐴‘𝑥){〈1𝑜, ∅〉,
〈1𝑜, 2𝑜〉, 〈∅,
2𝑜〉} (𝐵‘𝑥)) ↔ ¬ (∀𝑦 ∈ 𝑥 (𝐴‘𝑦) = (𝐵‘𝑦) → ¬ (𝐴‘𝑥){〈1𝑜, ∅〉,
〈1𝑜, 2𝑜〉, 〈∅,
2𝑜〉} (𝐵‘𝑥))) |
37 | 36 | rexbii 3143 |
. . . . 5
⊢
(∃𝑥 ∈ On
(∀𝑦 ∈ 𝑥 (𝐴‘𝑦) = (𝐵‘𝑦) ∧ (𝐴‘𝑥){〈1𝑜, ∅〉,
〈1𝑜, 2𝑜〉, 〈∅,
2𝑜〉} (𝐵‘𝑥)) ↔ ∃𝑥 ∈ On ¬ (∀𝑦 ∈ 𝑥 (𝐴‘𝑦) = (𝐵‘𝑦) → ¬ (𝐴‘𝑥){〈1𝑜, ∅〉,
〈1𝑜, 2𝑜〉, 〈∅,
2𝑜〉} (𝐵‘𝑥))) |
38 | | rexnal 3097 |
. . . . 5
⊢
(∃𝑥 ∈ On
¬ (∀𝑦 ∈
𝑥 (𝐴‘𝑦) = (𝐵‘𝑦) → ¬ (𝐴‘𝑥){〈1𝑜, ∅〉,
〈1𝑜, 2𝑜〉, 〈∅,
2𝑜〉} (𝐵‘𝑥)) ↔ ¬ ∀𝑥 ∈ On (∀𝑦 ∈ 𝑥 (𝐴‘𝑦) = (𝐵‘𝑦) → ¬ (𝐴‘𝑥){〈1𝑜, ∅〉,
〈1𝑜, 2𝑜〉, 〈∅,
2𝑜〉} (𝐵‘𝑥))) |
39 | 37, 38 | bitri 264 |
. . . 4
⊢
(∃𝑥 ∈ On
(∀𝑦 ∈ 𝑥 (𝐴‘𝑦) = (𝐵‘𝑦) ∧ (𝐴‘𝑥){〈1𝑜, ∅〉,
〈1𝑜, 2𝑜〉, 〈∅,
2𝑜〉} (𝐵‘𝑥)) ↔ ¬ ∀𝑥 ∈ On (∀𝑦 ∈ 𝑥 (𝐴‘𝑦) = (𝐵‘𝑦) → ¬ (𝐴‘𝑥){〈1𝑜, ∅〉,
〈1𝑜, 2𝑜〉, 〈∅,
2𝑜〉} (𝐵‘𝑥))) |
40 | 35, 39 | sylib 208 |
. . 3
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴‘𝑋) = ∅) → ¬ ∀𝑥 ∈ On (∀𝑦 ∈ 𝑥 (𝐴‘𝑦) = (𝐵‘𝑦) → ¬ (𝐴‘𝑥){〈1𝑜, ∅〉,
〈1𝑜, 2𝑜〉, 〈∅,
2𝑜〉} (𝐵‘𝑥))) |
41 | | 1on 7687 |
. . . . . . . . . . . . 13
⊢
1𝑜 ∈ On |
42 | 41 | elexi 3317 |
. . . . . . . . . . . 12
⊢
1𝑜 ∈ V |
43 | 42 | prid1 4404 |
. . . . . . . . . . 11
⊢
1𝑜 ∈ {1𝑜,
2𝑜} |
44 | 43 | nosgnn0i 32039 |
. . . . . . . . . 10
⊢ ∅
≠ 1𝑜 |
45 | 44 | neii 2898 |
. . . . . . . . 9
⊢ ¬
∅ = 1𝑜 |
46 | | simpll3 1235 |
. . . . . . . . . 10
⊢
(((((𝐴 ∈ No ∧ 𝐵 ∈ No
∧ 𝑋 ∈ On) ∧
((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴‘𝑋) = ∅) ∧ (𝐵‘𝑋) = 1𝑜) ∧ (𝑥 ∈ On ∧ ∀𝑦 ∈ 𝑥 (𝐴‘𝑦) = (𝐵‘𝑦))) → (𝐴‘𝑋) = ∅) |
47 | | simplr 809 |
. . . . . . . . . 10
⊢
(((((𝐴 ∈ No ∧ 𝐵 ∈ No
∧ 𝑋 ∈ On) ∧
((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴‘𝑋) = ∅) ∧ (𝐵‘𝑋) = 1𝑜) ∧ (𝑥 ∈ On ∧ ∀𝑦 ∈ 𝑥 (𝐴‘𝑦) = (𝐵‘𝑦))) → (𝐵‘𝑋) = 1𝑜) |
48 | | eqeq1 2728 |
. . . . . . . . . . . . 13
⊢ ((𝐴‘𝑋) = (𝐵‘𝑋) → ((𝐴‘𝑋) = ∅ ↔ (𝐵‘𝑋) = ∅)) |
49 | 48 | anbi1d 743 |
. . . . . . . . . . . 12
⊢ ((𝐴‘𝑋) = (𝐵‘𝑋) → (((𝐴‘𝑋) = ∅ ∧ (𝐵‘𝑋) = 1𝑜) ↔ ((𝐵‘𝑋) = ∅ ∧ (𝐵‘𝑋) =
1𝑜))) |
50 | | eqtr2 2744 |
. . . . . . . . . . . 12
⊢ (((𝐵‘𝑋) = ∅ ∧ (𝐵‘𝑋) = 1𝑜) → ∅ =
1𝑜) |
51 | 49, 50 | syl6bi 243 |
. . . . . . . . . . 11
⊢ ((𝐴‘𝑋) = (𝐵‘𝑋) → (((𝐴‘𝑋) = ∅ ∧ (𝐵‘𝑋) = 1𝑜) → ∅ =
1𝑜)) |
52 | 51 | com12 32 |
. . . . . . . . . 10
⊢ (((𝐴‘𝑋) = ∅ ∧ (𝐵‘𝑋) = 1𝑜) → ((𝐴‘𝑋) = (𝐵‘𝑋) → ∅ =
1𝑜)) |
53 | 46, 47, 52 | syl2anc 696 |
. . . . . . . . 9
⊢
(((((𝐴 ∈ No ∧ 𝐵 ∈ No
∧ 𝑋 ∈ On) ∧
((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴‘𝑋) = ∅) ∧ (𝐵‘𝑋) = 1𝑜) ∧ (𝑥 ∈ On ∧ ∀𝑦 ∈ 𝑥 (𝐴‘𝑦) = (𝐵‘𝑦))) → ((𝐴‘𝑋) = (𝐵‘𝑋) → ∅ =
1𝑜)) |
54 | 45, 53 | mtoi 190 |
. . . . . . . 8
⊢
(((((𝐴 ∈ No ∧ 𝐵 ∈ No
∧ 𝑋 ∈ On) ∧
((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴‘𝑋) = ∅) ∧ (𝐵‘𝑋) = 1𝑜) ∧ (𝑥 ∈ On ∧ ∀𝑦 ∈ 𝑥 (𝐴‘𝑦) = (𝐵‘𝑦))) → ¬ (𝐴‘𝑋) = (𝐵‘𝑋)) |
55 | | simpr 479 |
. . . . . . . . 9
⊢
((((((𝐴 ∈ No ∧ 𝐵 ∈ No
∧ 𝑋 ∈ On) ∧
((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴‘𝑋) = ∅) ∧ (𝐵‘𝑋) = 1𝑜) ∧ (𝑥 ∈ On ∧ ∀𝑦 ∈ 𝑥 (𝐴‘𝑦) = (𝐵‘𝑦))) ∧ 𝑋 ∈ 𝑥) → 𝑋 ∈ 𝑥) |
56 | | simplrr 820 |
. . . . . . . . 9
⊢
((((((𝐴 ∈ No ∧ 𝐵 ∈ No
∧ 𝑋 ∈ On) ∧
((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴‘𝑋) = ∅) ∧ (𝐵‘𝑋) = 1𝑜) ∧ (𝑥 ∈ On ∧ ∀𝑦 ∈ 𝑥 (𝐴‘𝑦) = (𝐵‘𝑦))) ∧ 𝑋 ∈ 𝑥) → ∀𝑦 ∈ 𝑥 (𝐴‘𝑦) = (𝐵‘𝑦)) |
57 | | fveq2 6304 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑋 → (𝐴‘𝑦) = (𝐴‘𝑋)) |
58 | | fveq2 6304 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑋 → (𝐵‘𝑦) = (𝐵‘𝑋)) |
59 | 57, 58 | eqeq12d 2739 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑋 → ((𝐴‘𝑦) = (𝐵‘𝑦) ↔ (𝐴‘𝑋) = (𝐵‘𝑋))) |
60 | 59 | rspcv 3409 |
. . . . . . . . 9
⊢ (𝑋 ∈ 𝑥 → (∀𝑦 ∈ 𝑥 (𝐴‘𝑦) = (𝐵‘𝑦) → (𝐴‘𝑋) = (𝐵‘𝑋))) |
61 | 55, 56, 60 | sylc 65 |
. . . . . . . 8
⊢
((((((𝐴 ∈ No ∧ 𝐵 ∈ No
∧ 𝑋 ∈ On) ∧
((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴‘𝑋) = ∅) ∧ (𝐵‘𝑋) = 1𝑜) ∧ (𝑥 ∈ On ∧ ∀𝑦 ∈ 𝑥 (𝐴‘𝑦) = (𝐵‘𝑦))) ∧ 𝑋 ∈ 𝑥) → (𝐴‘𝑋) = (𝐵‘𝑋)) |
62 | 54, 61 | mtand 694 |
. . . . . . 7
⊢
(((((𝐴 ∈ No ∧ 𝐵 ∈ No
∧ 𝑋 ∈ On) ∧
((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴‘𝑋) = ∅) ∧ (𝐵‘𝑋) = 1𝑜) ∧ (𝑥 ∈ On ∧ ∀𝑦 ∈ 𝑥 (𝐴‘𝑦) = (𝐵‘𝑦))) → ¬ 𝑋 ∈ 𝑥) |
63 | | simprl 811 |
. . . . . . . 8
⊢
(((((𝐴 ∈ No ∧ 𝐵 ∈ No
∧ 𝑋 ∈ On) ∧
((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴‘𝑋) = ∅) ∧ (𝐵‘𝑋) = 1𝑜) ∧ (𝑥 ∈ On ∧ ∀𝑦 ∈ 𝑥 (𝐴‘𝑦) = (𝐵‘𝑦))) → 𝑥 ∈ On) |
64 | | simpl13 1287 |
. . . . . . . . 9
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴‘𝑋) = ∅) ∧ (𝐵‘𝑋) = 1𝑜) → 𝑋 ∈ On) |
65 | 64 | adantr 472 |
. . . . . . . 8
⊢
(((((𝐴 ∈ No ∧ 𝐵 ∈ No
∧ 𝑋 ∈ On) ∧
((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴‘𝑋) = ∅) ∧ (𝐵‘𝑋) = 1𝑜) ∧ (𝑥 ∈ On ∧ ∀𝑦 ∈ 𝑥 (𝐴‘𝑦) = (𝐵‘𝑦))) → 𝑋 ∈ On) |
66 | | ontri1 5870 |
. . . . . . . 8
⊢ ((𝑥 ∈ On ∧ 𝑋 ∈ On) → (𝑥 ⊆ 𝑋 ↔ ¬ 𝑋 ∈ 𝑥)) |
67 | 63, 65, 66 | syl2anc 696 |
. . . . . . 7
⊢
(((((𝐴 ∈ No ∧ 𝐵 ∈ No
∧ 𝑋 ∈ On) ∧
((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴‘𝑋) = ∅) ∧ (𝐵‘𝑋) = 1𝑜) ∧ (𝑥 ∈ On ∧ ∀𝑦 ∈ 𝑥 (𝐴‘𝑦) = (𝐵‘𝑦))) → (𝑥 ⊆ 𝑋 ↔ ¬ 𝑋 ∈ 𝑥)) |
68 | 62, 67 | mpbird 247 |
. . . . . 6
⊢
(((((𝐴 ∈ No ∧ 𝐵 ∈ No
∧ 𝑋 ∈ On) ∧
((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴‘𝑋) = ∅) ∧ (𝐵‘𝑋) = 1𝑜) ∧ (𝑥 ∈ On ∧ ∀𝑦 ∈ 𝑥 (𝐴‘𝑦) = (𝐵‘𝑦))) → 𝑥 ⊆ 𝑋) |
69 | | onsseleq 5878 |
. . . . . . . 8
⊢ ((𝑥 ∈ On ∧ 𝑋 ∈ On) → (𝑥 ⊆ 𝑋 ↔ (𝑥 ∈ 𝑋 ∨ 𝑥 = 𝑋))) |
70 | 63, 65, 69 | syl2anc 696 |
. . . . . . 7
⊢
(((((𝐴 ∈ No ∧ 𝐵 ∈ No
∧ 𝑋 ∈ On) ∧
((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴‘𝑋) = ∅) ∧ (𝐵‘𝑋) = 1𝑜) ∧ (𝑥 ∈ On ∧ ∀𝑦 ∈ 𝑥 (𝐴‘𝑦) = (𝐵‘𝑦))) → (𝑥 ⊆ 𝑋 ↔ (𝑥 ∈ 𝑋 ∨ 𝑥 = 𝑋))) |
71 | | eqtr2 2744 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ↾ 𝑋)‘𝑥) = ∅ ∧ ((𝐴 ↾ 𝑋)‘𝑥) = 1𝑜) → ∅ =
1𝑜) |
72 | 71 | ancoms 468 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ↾ 𝑋)‘𝑥) = 1𝑜 ∧ ((𝐴 ↾ 𝑋)‘𝑥) = ∅) → ∅ =
1𝑜) |
73 | 45, 72 | mto 188 |
. . . . . . . . . . . 12
⊢ ¬
(((𝐴 ↾ 𝑋)‘𝑥) = 1𝑜 ∧ ((𝐴 ↾ 𝑋)‘𝑥) = ∅) |
74 | | df-1o 7680 |
. . . . . . . . . . . . . . . 16
⊢
1𝑜 = suc ∅ |
75 | | df-2o 7681 |
. . . . . . . . . . . . . . . 16
⊢
2𝑜 = suc 1𝑜 |
76 | 74, 75 | eqeq12i 2738 |
. . . . . . . . . . . . . . 15
⊢
(1𝑜 = 2𝑜 ↔ suc ∅ = suc
1𝑜) |
77 | | 0elon 5891 |
. . . . . . . . . . . . . . . 16
⊢ ∅
∈ On |
78 | | suc11 5944 |
. . . . . . . . . . . . . . . 16
⊢ ((∅
∈ On ∧ 1𝑜 ∈ On) → (suc ∅ = suc
1𝑜 ↔ ∅ = 1𝑜)) |
79 | 77, 41, 78 | mp2an 710 |
. . . . . . . . . . . . . . 15
⊢ (suc
∅ = suc 1𝑜 ↔ ∅ =
1𝑜) |
80 | 76, 79 | bitri 264 |
. . . . . . . . . . . . . 14
⊢
(1𝑜 = 2𝑜 ↔ ∅ =
1𝑜) |
81 | 44, 80 | nemtbir 2991 |
. . . . . . . . . . . . 13
⊢ ¬
1𝑜 = 2𝑜 |
82 | | eqtr2 2744 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ↾ 𝑋)‘𝑥) = 1𝑜 ∧ ((𝐴 ↾ 𝑋)‘𝑥) = 2𝑜) →
1𝑜 = 2𝑜) |
83 | 81, 82 | mto 188 |
. . . . . . . . . . . 12
⊢ ¬
(((𝐴 ↾ 𝑋)‘𝑥) = 1𝑜 ∧ ((𝐴 ↾ 𝑋)‘𝑥) = 2𝑜) |
84 | | 2on 7688 |
. . . . . . . . . . . . . . . . 17
⊢
2𝑜 ∈ On |
85 | 84 | elexi 3317 |
. . . . . . . . . . . . . . . 16
⊢
2𝑜 ∈ V |
86 | 85 | prid2 4405 |
. . . . . . . . . . . . . . 15
⊢
2𝑜 ∈ {1𝑜,
2𝑜} |
87 | 86 | nosgnn0i 32039 |
. . . . . . . . . . . . . 14
⊢ ∅
≠ 2𝑜 |
88 | 87 | neii 2898 |
. . . . . . . . . . . . 13
⊢ ¬
∅ = 2𝑜 |
89 | | eqtr2 2744 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ↾ 𝑋)‘𝑥) = ∅ ∧ ((𝐴 ↾ 𝑋)‘𝑥) = 2𝑜) → ∅ =
2𝑜) |
90 | 88, 89 | mto 188 |
. . . . . . . . . . . 12
⊢ ¬
(((𝐴 ↾ 𝑋)‘𝑥) = ∅ ∧ ((𝐴 ↾ 𝑋)‘𝑥) = 2𝑜) |
91 | 73, 83, 90 | 3pm3.2i 1376 |
. . . . . . . . . . 11
⊢ (¬
(((𝐴 ↾ 𝑋)‘𝑥) = 1𝑜 ∧ ((𝐴 ↾ 𝑋)‘𝑥) = ∅) ∧ ¬ (((𝐴 ↾ 𝑋)‘𝑥) = 1𝑜 ∧ ((𝐴 ↾ 𝑋)‘𝑥) = 2𝑜) ∧ ¬
(((𝐴 ↾ 𝑋)‘𝑥) = ∅ ∧ ((𝐴 ↾ 𝑋)‘𝑥) = 2𝑜)) |
92 | | fvex 6314 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ↾ 𝑋)‘𝑥) ∈ V |
93 | 92, 92 | brtp 31867 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ↾ 𝑋)‘𝑥){〈1𝑜, ∅〉,
〈1𝑜, 2𝑜〉, 〈∅,
2𝑜〉} ((𝐴 ↾ 𝑋)‘𝑥) ↔ ((((𝐴 ↾ 𝑋)‘𝑥) = 1𝑜 ∧ ((𝐴 ↾ 𝑋)‘𝑥) = ∅) ∨ (((𝐴 ↾ 𝑋)‘𝑥) = 1𝑜 ∧ ((𝐴 ↾ 𝑋)‘𝑥) = 2𝑜) ∨ (((𝐴 ↾ 𝑋)‘𝑥) = ∅ ∧ ((𝐴 ↾ 𝑋)‘𝑥) = 2𝑜))) |
94 | | 3oran 1099 |
. . . . . . . . . . . . 13
⊢
(((((𝐴 ↾ 𝑋)‘𝑥) = 1𝑜 ∧ ((𝐴 ↾ 𝑋)‘𝑥) = ∅) ∨ (((𝐴 ↾ 𝑋)‘𝑥) = 1𝑜 ∧ ((𝐴 ↾ 𝑋)‘𝑥) = 2𝑜) ∨ (((𝐴 ↾ 𝑋)‘𝑥) = ∅ ∧ ((𝐴 ↾ 𝑋)‘𝑥) = 2𝑜)) ↔ ¬
(¬ (((𝐴 ↾ 𝑋)‘𝑥) = 1𝑜 ∧ ((𝐴 ↾ 𝑋)‘𝑥) = ∅) ∧ ¬ (((𝐴 ↾ 𝑋)‘𝑥) = 1𝑜 ∧ ((𝐴 ↾ 𝑋)‘𝑥) = 2𝑜) ∧ ¬
(((𝐴 ↾ 𝑋)‘𝑥) = ∅ ∧ ((𝐴 ↾ 𝑋)‘𝑥) = 2𝑜))) |
95 | 93, 94 | bitri 264 |
. . . . . . . . . . . 12
⊢ (((𝐴 ↾ 𝑋)‘𝑥){〈1𝑜, ∅〉,
〈1𝑜, 2𝑜〉, 〈∅,
2𝑜〉} ((𝐴 ↾ 𝑋)‘𝑥) ↔ ¬ (¬ (((𝐴 ↾ 𝑋)‘𝑥) = 1𝑜 ∧ ((𝐴 ↾ 𝑋)‘𝑥) = ∅) ∧ ¬ (((𝐴 ↾ 𝑋)‘𝑥) = 1𝑜 ∧ ((𝐴 ↾ 𝑋)‘𝑥) = 2𝑜) ∧ ¬
(((𝐴 ↾ 𝑋)‘𝑥) = ∅ ∧ ((𝐴 ↾ 𝑋)‘𝑥) = 2𝑜))) |
96 | 95 | con2bii 346 |
. . . . . . . . . . 11
⊢ ((¬
(((𝐴 ↾ 𝑋)‘𝑥) = 1𝑜 ∧ ((𝐴 ↾ 𝑋)‘𝑥) = ∅) ∧ ¬ (((𝐴 ↾ 𝑋)‘𝑥) = 1𝑜 ∧ ((𝐴 ↾ 𝑋)‘𝑥) = 2𝑜) ∧ ¬
(((𝐴 ↾ 𝑋)‘𝑥) = ∅ ∧ ((𝐴 ↾ 𝑋)‘𝑥) = 2𝑜)) ↔ ¬
((𝐴 ↾ 𝑋)‘𝑥){〈1𝑜, ∅〉,
〈1𝑜, 2𝑜〉, 〈∅,
2𝑜〉} ((𝐴 ↾ 𝑋)‘𝑥)) |
97 | 91, 96 | mpbi 220 |
. . . . . . . . . 10
⊢ ¬
((𝐴 ↾ 𝑋)‘𝑥){〈1𝑜, ∅〉,
〈1𝑜, 2𝑜〉, 〈∅,
2𝑜〉} ((𝐴 ↾ 𝑋)‘𝑥) |
98 | | simpl2l 1259 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴‘𝑋) = ∅) ∧ (𝐵‘𝑋) = 1𝑜) → (𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋)) |
99 | 98 | adantr 472 |
. . . . . . . . . . . 12
⊢
(((((𝐴 ∈ No ∧ 𝐵 ∈ No
∧ 𝑋 ∈ On) ∧
((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴‘𝑋) = ∅) ∧ (𝐵‘𝑋) = 1𝑜) ∧ (𝑥 ∈ On ∧ ∀𝑦 ∈ 𝑥 (𝐴‘𝑦) = (𝐵‘𝑦))) → (𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋)) |
100 | 99 | fveq1d 6306 |
. . . . . . . . . . 11
⊢
(((((𝐴 ∈ No ∧ 𝐵 ∈ No
∧ 𝑋 ∈ On) ∧
((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴‘𝑋) = ∅) ∧ (𝐵‘𝑋) = 1𝑜) ∧ (𝑥 ∈ On ∧ ∀𝑦 ∈ 𝑥 (𝐴‘𝑦) = (𝐵‘𝑦))) → ((𝐴 ↾ 𝑋)‘𝑥) = ((𝐵 ↾ 𝑋)‘𝑥)) |
101 | 100 | breq2d 4772 |
. . . . . . . . . 10
⊢
(((((𝐴 ∈ No ∧ 𝐵 ∈ No
∧ 𝑋 ∈ On) ∧
((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴‘𝑋) = ∅) ∧ (𝐵‘𝑋) = 1𝑜) ∧ (𝑥 ∈ On ∧ ∀𝑦 ∈ 𝑥 (𝐴‘𝑦) = (𝐵‘𝑦))) → (((𝐴 ↾ 𝑋)‘𝑥){〈1𝑜, ∅〉,
〈1𝑜, 2𝑜〉, 〈∅,
2𝑜〉} ((𝐴 ↾ 𝑋)‘𝑥) ↔ ((𝐴 ↾ 𝑋)‘𝑥){〈1𝑜, ∅〉,
〈1𝑜, 2𝑜〉, 〈∅,
2𝑜〉} ((𝐵 ↾ 𝑋)‘𝑥))) |
102 | 97, 101 | mtbii 315 |
. . . . . . . . 9
⊢
(((((𝐴 ∈ No ∧ 𝐵 ∈ No
∧ 𝑋 ∈ On) ∧
((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴‘𝑋) = ∅) ∧ (𝐵‘𝑋) = 1𝑜) ∧ (𝑥 ∈ On ∧ ∀𝑦 ∈ 𝑥 (𝐴‘𝑦) = (𝐵‘𝑦))) → ¬ ((𝐴 ↾ 𝑋)‘𝑥){〈1𝑜, ∅〉,
〈1𝑜, 2𝑜〉, 〈∅,
2𝑜〉} ((𝐵 ↾ 𝑋)‘𝑥)) |
103 | | fvres 6320 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝑋 → ((𝐴 ↾ 𝑋)‘𝑥) = (𝐴‘𝑥)) |
104 | | fvres 6320 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝑋 → ((𝐵 ↾ 𝑋)‘𝑥) = (𝐵‘𝑥)) |
105 | 103, 104 | breq12d 4773 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝑋 → (((𝐴 ↾ 𝑋)‘𝑥){〈1𝑜, ∅〉,
〈1𝑜, 2𝑜〉, 〈∅,
2𝑜〉} ((𝐵 ↾ 𝑋)‘𝑥) ↔ (𝐴‘𝑥){〈1𝑜, ∅〉,
〈1𝑜, 2𝑜〉, 〈∅,
2𝑜〉} (𝐵‘𝑥))) |
106 | 105 | notbid 307 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝑋 → (¬ ((𝐴 ↾ 𝑋)‘𝑥){〈1𝑜, ∅〉,
〈1𝑜, 2𝑜〉, 〈∅,
2𝑜〉} ((𝐵 ↾ 𝑋)‘𝑥) ↔ ¬ (𝐴‘𝑥){〈1𝑜, ∅〉,
〈1𝑜, 2𝑜〉, 〈∅,
2𝑜〉} (𝐵‘𝑥))) |
107 | 102, 106 | syl5ibcom 235 |
. . . . . . . 8
⊢
(((((𝐴 ∈ No ∧ 𝐵 ∈ No
∧ 𝑋 ∈ On) ∧
((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴‘𝑋) = ∅) ∧ (𝐵‘𝑋) = 1𝑜) ∧ (𝑥 ∈ On ∧ ∀𝑦 ∈ 𝑥 (𝐴‘𝑦) = (𝐵‘𝑦))) → (𝑥 ∈ 𝑋 → ¬ (𝐴‘𝑥){〈1𝑜, ∅〉,
〈1𝑜, 2𝑜〉, 〈∅,
2𝑜〉} (𝐵‘𝑥))) |
108 | 45 | intnanr 999 |
. . . . . . . . . . . 12
⊢ ¬
(∅ = 1𝑜 ∧ 1𝑜 =
∅) |
109 | 45 | intnanr 999 |
. . . . . . . . . . . 12
⊢ ¬
(∅ = 1𝑜 ∧ 1𝑜 =
2𝑜) |
110 | 81 | intnan 998 |
. . . . . . . . . . . 12
⊢ ¬
(∅ = ∅ ∧ 1𝑜 =
2𝑜) |
111 | 108, 109,
110 | 3pm3.2i 1376 |
. . . . . . . . . . 11
⊢ (¬
(∅ = 1𝑜 ∧ 1𝑜 = ∅) ∧
¬ (∅ = 1𝑜 ∧ 1𝑜 =
2𝑜) ∧ ¬ (∅ = ∅ ∧
1𝑜 = 2𝑜)) |
112 | | 0ex 4898 |
. . . . . . . . . . . . . 14
⊢ ∅
∈ V |
113 | 112, 42 | brtp 31867 |
. . . . . . . . . . . . 13
⊢
(∅{〈1𝑜, ∅〉,
〈1𝑜, 2𝑜〉, 〈∅,
2𝑜〉}1𝑜 ↔ ((∅ =
1𝑜 ∧ 1𝑜 = ∅) ∨ (∅ =
1𝑜 ∧ 1𝑜 = 2𝑜) ∨
(∅ = ∅ ∧ 1𝑜 =
2𝑜))) |
114 | | 3oran 1099 |
. . . . . . . . . . . . 13
⊢
(((∅ = 1𝑜 ∧ 1𝑜 =
∅) ∨ (∅ = 1𝑜 ∧ 1𝑜 =
2𝑜) ∨ (∅ = ∅ ∧ 1𝑜 =
2𝑜)) ↔ ¬ (¬ (∅ = 1𝑜
∧ 1𝑜 = ∅) ∧ ¬ (∅ =
1𝑜 ∧ 1𝑜 = 2𝑜)
∧ ¬ (∅ = ∅ ∧ 1𝑜 =
2𝑜))) |
115 | 113, 114 | bitri 264 |
. . . . . . . . . . . 12
⊢
(∅{〈1𝑜, ∅〉,
〈1𝑜, 2𝑜〉, 〈∅,
2𝑜〉}1𝑜 ↔ ¬ (¬ (∅
= 1𝑜 ∧ 1𝑜 = ∅) ∧ ¬
(∅ = 1𝑜 ∧ 1𝑜 =
2𝑜) ∧ ¬ (∅ = ∅ ∧
1𝑜 = 2𝑜))) |
116 | 115 | con2bii 346 |
. . . . . . . . . . 11
⊢ ((¬
(∅ = 1𝑜 ∧ 1𝑜 = ∅) ∧
¬ (∅ = 1𝑜 ∧ 1𝑜 =
2𝑜) ∧ ¬ (∅ = ∅ ∧
1𝑜 = 2𝑜)) ↔ ¬
∅{〈1𝑜, ∅〉,
〈1𝑜, 2𝑜〉, 〈∅,
2𝑜〉}1𝑜) |
117 | 111, 116 | mpbi 220 |
. . . . . . . . . 10
⊢ ¬
∅{〈1𝑜, ∅〉,
〈1𝑜, 2𝑜〉, 〈∅,
2𝑜〉}1𝑜 |
118 | 46, 47 | breq12d 4773 |
. . . . . . . . . 10
⊢
(((((𝐴 ∈ No ∧ 𝐵 ∈ No
∧ 𝑋 ∈ On) ∧
((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴‘𝑋) = ∅) ∧ (𝐵‘𝑋) = 1𝑜) ∧ (𝑥 ∈ On ∧ ∀𝑦 ∈ 𝑥 (𝐴‘𝑦) = (𝐵‘𝑦))) → ((𝐴‘𝑋){〈1𝑜,
∅〉, 〈1𝑜, 2𝑜〉,
〈∅, 2𝑜〉} (𝐵‘𝑋) ↔
∅{〈1𝑜, ∅〉,
〈1𝑜, 2𝑜〉, 〈∅,
2𝑜〉}1𝑜)) |
119 | 117, 118 | mtbiri 316 |
. . . . . . . . 9
⊢
(((((𝐴 ∈ No ∧ 𝐵 ∈ No
∧ 𝑋 ∈ On) ∧
((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴‘𝑋) = ∅) ∧ (𝐵‘𝑋) = 1𝑜) ∧ (𝑥 ∈ On ∧ ∀𝑦 ∈ 𝑥 (𝐴‘𝑦) = (𝐵‘𝑦))) → ¬ (𝐴‘𝑋){〈1𝑜,
∅〉, 〈1𝑜, 2𝑜〉,
〈∅, 2𝑜〉} (𝐵‘𝑋)) |
120 | | fveq2 6304 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑋 → (𝐴‘𝑥) = (𝐴‘𝑋)) |
121 | | fveq2 6304 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑋 → (𝐵‘𝑥) = (𝐵‘𝑋)) |
122 | 120, 121 | breq12d 4773 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑋 → ((𝐴‘𝑥){〈1𝑜, ∅〉,
〈1𝑜, 2𝑜〉, 〈∅,
2𝑜〉} (𝐵‘𝑥) ↔ (𝐴‘𝑋){〈1𝑜,
∅〉, 〈1𝑜, 2𝑜〉,
〈∅, 2𝑜〉} (𝐵‘𝑋))) |
123 | 122 | notbid 307 |
. . . . . . . . 9
⊢ (𝑥 = 𝑋 → (¬ (𝐴‘𝑥){〈1𝑜, ∅〉,
〈1𝑜, 2𝑜〉, 〈∅,
2𝑜〉} (𝐵‘𝑥) ↔ ¬ (𝐴‘𝑋){〈1𝑜,
∅〉, 〈1𝑜, 2𝑜〉,
〈∅, 2𝑜〉} (𝐵‘𝑋))) |
124 | 119, 123 | syl5ibrcom 237 |
. . . . . . . 8
⊢
(((((𝐴 ∈ No ∧ 𝐵 ∈ No
∧ 𝑋 ∈ On) ∧
((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴‘𝑋) = ∅) ∧ (𝐵‘𝑋) = 1𝑜) ∧ (𝑥 ∈ On ∧ ∀𝑦 ∈ 𝑥 (𝐴‘𝑦) = (𝐵‘𝑦))) → (𝑥 = 𝑋 → ¬ (𝐴‘𝑥){〈1𝑜, ∅〉,
〈1𝑜, 2𝑜〉, 〈∅,
2𝑜〉} (𝐵‘𝑥))) |
125 | 107, 124 | jaod 394 |
. . . . . . 7
⊢
(((((𝐴 ∈ No ∧ 𝐵 ∈ No
∧ 𝑋 ∈ On) ∧
((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴‘𝑋) = ∅) ∧ (𝐵‘𝑋) = 1𝑜) ∧ (𝑥 ∈ On ∧ ∀𝑦 ∈ 𝑥 (𝐴‘𝑦) = (𝐵‘𝑦))) → ((𝑥 ∈ 𝑋 ∨ 𝑥 = 𝑋) → ¬ (𝐴‘𝑥){〈1𝑜, ∅〉,
〈1𝑜, 2𝑜〉, 〈∅,
2𝑜〉} (𝐵‘𝑥))) |
126 | 70, 125 | sylbid 230 |
. . . . . 6
⊢
(((((𝐴 ∈ No ∧ 𝐵 ∈ No
∧ 𝑋 ∈ On) ∧
((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴‘𝑋) = ∅) ∧ (𝐵‘𝑋) = 1𝑜) ∧ (𝑥 ∈ On ∧ ∀𝑦 ∈ 𝑥 (𝐴‘𝑦) = (𝐵‘𝑦))) → (𝑥 ⊆ 𝑋 → ¬ (𝐴‘𝑥){〈1𝑜, ∅〉,
〈1𝑜, 2𝑜〉, 〈∅,
2𝑜〉} (𝐵‘𝑥))) |
127 | 68, 126 | mpd 15 |
. . . . 5
⊢
(((((𝐴 ∈ No ∧ 𝐵 ∈ No
∧ 𝑋 ∈ On) ∧
((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴‘𝑋) = ∅) ∧ (𝐵‘𝑋) = 1𝑜) ∧ (𝑥 ∈ On ∧ ∀𝑦 ∈ 𝑥 (𝐴‘𝑦) = (𝐵‘𝑦))) → ¬ (𝐴‘𝑥){〈1𝑜, ∅〉,
〈1𝑜, 2𝑜〉, 〈∅,
2𝑜〉} (𝐵‘𝑥)) |
128 | 127 | expr 644 |
. . . 4
⊢
(((((𝐴 ∈ No ∧ 𝐵 ∈ No
∧ 𝑋 ∈ On) ∧
((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴‘𝑋) = ∅) ∧ (𝐵‘𝑋) = 1𝑜) ∧ 𝑥 ∈ On) →
(∀𝑦 ∈ 𝑥 (𝐴‘𝑦) = (𝐵‘𝑦) → ¬ (𝐴‘𝑥){〈1𝑜, ∅〉,
〈1𝑜, 2𝑜〉, 〈∅,
2𝑜〉} (𝐵‘𝑥))) |
129 | 128 | ralrimiva 3068 |
. . 3
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴‘𝑋) = ∅) ∧ (𝐵‘𝑋) = 1𝑜) →
∀𝑥 ∈ On
(∀𝑦 ∈ 𝑥 (𝐴‘𝑦) = (𝐵‘𝑦) → ¬ (𝐴‘𝑥){〈1𝑜, ∅〉,
〈1𝑜, 2𝑜〉, 〈∅,
2𝑜〉} (𝐵‘𝑥))) |
130 | 40, 129 | mtand 694 |
. 2
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴‘𝑋) = ∅) → ¬ (𝐵‘𝑋) = 1𝑜) |
131 | | nofv 32037 |
. . . 4
⊢ (𝐵 ∈
No → ((𝐵‘𝑋) = ∅ ∨ (𝐵‘𝑋) = 1𝑜 ∨ (𝐵‘𝑋) = 2𝑜)) |
132 | 32, 131 | syl 17 |
. . 3
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴‘𝑋) = ∅) → ((𝐵‘𝑋) = ∅ ∨ (𝐵‘𝑋) = 1𝑜 ∨ (𝐵‘𝑋) = 2𝑜)) |
133 | | 3orrot 1077 |
. . . 4
⊢ (((𝐵‘𝑋) = ∅ ∨ (𝐵‘𝑋) = 1𝑜 ∨ (𝐵‘𝑋) = 2𝑜) ↔ ((𝐵‘𝑋) = 1𝑜 ∨ (𝐵‘𝑋) = 2𝑜 ∨ (𝐵‘𝑋) = ∅)) |
134 | | 3orrot 1077 |
. . . 4
⊢ (((𝐵‘𝑋) = 1𝑜 ∨ (𝐵‘𝑋) = 2𝑜 ∨ (𝐵‘𝑋) = ∅) ↔ ((𝐵‘𝑋) = 2𝑜 ∨ (𝐵‘𝑋) = ∅ ∨ (𝐵‘𝑋) = 1𝑜)) |
135 | 133, 134 | bitri 264 |
. . 3
⊢ (((𝐵‘𝑋) = ∅ ∨ (𝐵‘𝑋) = 1𝑜 ∨ (𝐵‘𝑋) = 2𝑜) ↔ ((𝐵‘𝑋) = 2𝑜 ∨ (𝐵‘𝑋) = ∅ ∨ (𝐵‘𝑋) = 1𝑜)) |
136 | 132, 135 | sylib 208 |
. 2
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴‘𝑋) = ∅) → ((𝐵‘𝑋) = 2𝑜 ∨ (𝐵‘𝑋) = ∅ ∨ (𝐵‘𝑋) = 1𝑜)) |
137 | 31, 130, 136 | ecase23d 1549 |
1
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ 𝐴 <s 𝐵) ∧ (𝐴‘𝑋) = ∅) → (𝐵‘𝑋) = 2𝑜) |