Step | Hyp | Ref
| Expression |
1 | | simpl2 1230 |
. . . . . 6
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2𝑜)) → 𝐵 ∈
No ) |
2 | | nofv 32138 |
. . . . . 6
⊢ (𝐵 ∈
No → ((𝐵‘𝑋) = ∅ ∨ (𝐵‘𝑋) = 1𝑜 ∨ (𝐵‘𝑋) = 2𝑜)) |
3 | 1, 2 | syl 17 |
. . . . 5
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2𝑜)) → ((𝐵‘𝑋) = ∅ ∨ (𝐵‘𝑋) = 1𝑜 ∨ (𝐵‘𝑋) = 2𝑜)) |
4 | | 3orel3 31922 |
. . . . 5
⊢ (¬
(𝐵‘𝑋) = 2𝑜 → (((𝐵‘𝑋) = ∅ ∨ (𝐵‘𝑋) = 1𝑜 ∨ (𝐵‘𝑋) = 2𝑜) → ((𝐵‘𝑋) = ∅ ∨ (𝐵‘𝑋) =
1𝑜))) |
5 | 3, 4 | syl5com 31 |
. . . 4
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2𝑜)) → (¬
(𝐵‘𝑋) = 2𝑜 → ((𝐵‘𝑋) = ∅ ∨ (𝐵‘𝑋) =
1𝑜))) |
6 | | simp13 1248 |
. . . . . . 7
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2𝑜) ∧ ((𝐵‘𝑋) = ∅ ∨ (𝐵‘𝑋) = 1𝑜)) → 𝑋 ∈ On) |
7 | | fveq1 6353 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) → ((𝐴 ↾ 𝑋)‘𝑦) = ((𝐵 ↾ 𝑋)‘𝑦)) |
8 | 7 | eqcomd 2767 |
. . . . . . . . . . . 12
⊢ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) → ((𝐵 ↾ 𝑋)‘𝑦) = ((𝐴 ↾ 𝑋)‘𝑦)) |
9 | 8 | adantr 472 |
. . . . . . . . . . 11
⊢ (((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ 𝑦 ∈ 𝑋) → ((𝐵 ↾ 𝑋)‘𝑦) = ((𝐴 ↾ 𝑋)‘𝑦)) |
10 | | simpr 479 |
. . . . . . . . . . . 12
⊢ (((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ 𝑦 ∈ 𝑋) → 𝑦 ∈ 𝑋) |
11 | 10 | fvresd 6371 |
. . . . . . . . . . 11
⊢ (((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ 𝑦 ∈ 𝑋) → ((𝐵 ↾ 𝑋)‘𝑦) = (𝐵‘𝑦)) |
12 | 10 | fvresd 6371 |
. . . . . . . . . . 11
⊢ (((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ 𝑦 ∈ 𝑋) → ((𝐴 ↾ 𝑋)‘𝑦) = (𝐴‘𝑦)) |
13 | 9, 11, 12 | 3eqtr3d 2803 |
. . . . . . . . . 10
⊢ (((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ 𝑦 ∈ 𝑋) → (𝐵‘𝑦) = (𝐴‘𝑦)) |
14 | 13 | ralrimiva 3105 |
. . . . . . . . 9
⊢ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) → ∀𝑦 ∈ 𝑋 (𝐵‘𝑦) = (𝐴‘𝑦)) |
15 | 14 | adantr 472 |
. . . . . . . 8
⊢ (((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2𝑜) →
∀𝑦 ∈ 𝑋 (𝐵‘𝑦) = (𝐴‘𝑦)) |
16 | 15 | 3ad2ant2 1129 |
. . . . . . 7
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2𝑜) ∧ ((𝐵‘𝑋) = ∅ ∨ (𝐵‘𝑋) = 1𝑜)) →
∀𝑦 ∈ 𝑋 (𝐵‘𝑦) = (𝐴‘𝑦)) |
17 | | simprr 813 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2𝑜)) → (𝐴‘𝑋) = 2𝑜) |
18 | 17 | a1d 25 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2𝑜)) → ((𝐵‘𝑋) = ∅ → (𝐴‘𝑋) = 2𝑜)) |
19 | 18 | ancld 577 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2𝑜)) → ((𝐵‘𝑋) = ∅ → ((𝐵‘𝑋) = ∅ ∧ (𝐴‘𝑋) =
2𝑜))) |
20 | 17 | a1d 25 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2𝑜)) → ((𝐵‘𝑋) = 1𝑜 → (𝐴‘𝑋) = 2𝑜)) |
21 | 20 | ancld 577 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2𝑜)) → ((𝐵‘𝑋) = 1𝑜 → ((𝐵‘𝑋) = 1𝑜 ∧ (𝐴‘𝑋) =
2𝑜))) |
22 | 19, 21 | orim12d 919 |
. . . . . . . . . 10
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2𝑜)) → (((𝐵‘𝑋) = ∅ ∨ (𝐵‘𝑋) = 1𝑜) → (((𝐵‘𝑋) = ∅ ∧ (𝐴‘𝑋) = 2𝑜) ∨ ((𝐵‘𝑋) = 1𝑜 ∧ (𝐴‘𝑋) =
2𝑜)))) |
23 | 22 | 3impia 1110 |
. . . . . . . . 9
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2𝑜) ∧ ((𝐵‘𝑋) = ∅ ∨ (𝐵‘𝑋) = 1𝑜)) → (((𝐵‘𝑋) = ∅ ∧ (𝐴‘𝑋) = 2𝑜) ∨ ((𝐵‘𝑋) = 1𝑜 ∧ (𝐴‘𝑋) =
2𝑜))) |
24 | | 3mix3 1417 |
. . . . . . . . . 10
⊢ (((𝐵‘𝑋) = ∅ ∧ (𝐴‘𝑋) = 2𝑜) → (((𝐵‘𝑋) = 1𝑜 ∧ (𝐴‘𝑋) = ∅) ∨ ((𝐵‘𝑋) = 1𝑜 ∧ (𝐴‘𝑋) = 2𝑜) ∨ ((𝐵‘𝑋) = ∅ ∧ (𝐴‘𝑋) =
2𝑜))) |
25 | | 3mix2 1416 |
. . . . . . . . . 10
⊢ (((𝐵‘𝑋) = 1𝑜 ∧ (𝐴‘𝑋) = 2𝑜) → (((𝐵‘𝑋) = 1𝑜 ∧ (𝐴‘𝑋) = ∅) ∨ ((𝐵‘𝑋) = 1𝑜 ∧ (𝐴‘𝑋) = 2𝑜) ∨ ((𝐵‘𝑋) = ∅ ∧ (𝐴‘𝑋) =
2𝑜))) |
26 | 24, 25 | jaoi 393 |
. . . . . . . . 9
⊢ ((((𝐵‘𝑋) = ∅ ∧ (𝐴‘𝑋) = 2𝑜) ∨ ((𝐵‘𝑋) = 1𝑜 ∧ (𝐴‘𝑋) = 2𝑜)) → (((𝐵‘𝑋) = 1𝑜 ∧ (𝐴‘𝑋) = ∅) ∨ ((𝐵‘𝑋) = 1𝑜 ∧ (𝐴‘𝑋) = 2𝑜) ∨ ((𝐵‘𝑋) = ∅ ∧ (𝐴‘𝑋) =
2𝑜))) |
27 | 23, 26 | syl 17 |
. . . . . . . 8
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2𝑜) ∧ ((𝐵‘𝑋) = ∅ ∨ (𝐵‘𝑋) = 1𝑜)) → (((𝐵‘𝑋) = 1𝑜 ∧ (𝐴‘𝑋) = ∅) ∨ ((𝐵‘𝑋) = 1𝑜 ∧ (𝐴‘𝑋) = 2𝑜) ∨ ((𝐵‘𝑋) = ∅ ∧ (𝐴‘𝑋) =
2𝑜))) |
28 | | fvex 6364 |
. . . . . . . . 9
⊢ (𝐵‘𝑋) ∈ V |
29 | | fvex 6364 |
. . . . . . . . 9
⊢ (𝐴‘𝑋) ∈ V |
30 | 28, 29 | brtp 31968 |
. . . . . . . 8
⊢ ((𝐵‘𝑋){〈1𝑜,
∅〉, 〈1𝑜, 2𝑜〉,
〈∅, 2𝑜〉} (𝐴‘𝑋) ↔ (((𝐵‘𝑋) = 1𝑜 ∧ (𝐴‘𝑋) = ∅) ∨ ((𝐵‘𝑋) = 1𝑜 ∧ (𝐴‘𝑋) = 2𝑜) ∨ ((𝐵‘𝑋) = ∅ ∧ (𝐴‘𝑋) =
2𝑜))) |
31 | 27, 30 | sylibr 224 |
. . . . . . 7
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2𝑜) ∧ ((𝐵‘𝑋) = ∅ ∨ (𝐵‘𝑋) = 1𝑜)) → (𝐵‘𝑋){〈1𝑜,
∅〉, 〈1𝑜, 2𝑜〉,
〈∅, 2𝑜〉} (𝐴‘𝑋)) |
32 | | raleq 3278 |
. . . . . . . . 9
⊢ (𝑥 = 𝑋 → (∀𝑦 ∈ 𝑥 (𝐵‘𝑦) = (𝐴‘𝑦) ↔ ∀𝑦 ∈ 𝑋 (𝐵‘𝑦) = (𝐴‘𝑦))) |
33 | | fveq2 6354 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑋 → (𝐵‘𝑥) = (𝐵‘𝑋)) |
34 | | fveq2 6354 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑋 → (𝐴‘𝑥) = (𝐴‘𝑋)) |
35 | 33, 34 | breq12d 4818 |
. . . . . . . . 9
⊢ (𝑥 = 𝑋 → ((𝐵‘𝑥){〈1𝑜, ∅〉,
〈1𝑜, 2𝑜〉, 〈∅,
2𝑜〉} (𝐴‘𝑥) ↔ (𝐵‘𝑋){〈1𝑜,
∅〉, 〈1𝑜, 2𝑜〉,
〈∅, 2𝑜〉} (𝐴‘𝑋))) |
36 | 32, 35 | anbi12d 749 |
. . . . . . . 8
⊢ (𝑥 = 𝑋 → ((∀𝑦 ∈ 𝑥 (𝐵‘𝑦) = (𝐴‘𝑦) ∧ (𝐵‘𝑥){〈1𝑜, ∅〉,
〈1𝑜, 2𝑜〉, 〈∅,
2𝑜〉} (𝐴‘𝑥)) ↔ (∀𝑦 ∈ 𝑋 (𝐵‘𝑦) = (𝐴‘𝑦) ∧ (𝐵‘𝑋){〈1𝑜,
∅〉, 〈1𝑜, 2𝑜〉,
〈∅, 2𝑜〉} (𝐴‘𝑋)))) |
37 | 36 | rspcev 3450 |
. . . . . . 7
⊢ ((𝑋 ∈ On ∧ (∀𝑦 ∈ 𝑋 (𝐵‘𝑦) = (𝐴‘𝑦) ∧ (𝐵‘𝑋){〈1𝑜,
∅〉, 〈1𝑜, 2𝑜〉,
〈∅, 2𝑜〉} (𝐴‘𝑋))) → ∃𝑥 ∈ On (∀𝑦 ∈ 𝑥 (𝐵‘𝑦) = (𝐴‘𝑦) ∧ (𝐵‘𝑥){〈1𝑜, ∅〉,
〈1𝑜, 2𝑜〉, 〈∅,
2𝑜〉} (𝐴‘𝑥))) |
38 | 6, 16, 31, 37 | syl12anc 1475 |
. . . . . 6
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2𝑜) ∧ ((𝐵‘𝑋) = ∅ ∨ (𝐵‘𝑋) = 1𝑜)) →
∃𝑥 ∈ On
(∀𝑦 ∈ 𝑥 (𝐵‘𝑦) = (𝐴‘𝑦) ∧ (𝐵‘𝑥){〈1𝑜, ∅〉,
〈1𝑜, 2𝑜〉, 〈∅,
2𝑜〉} (𝐴‘𝑥))) |
39 | | simp12 1247 |
. . . . . . 7
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2𝑜) ∧ ((𝐵‘𝑋) = ∅ ∨ (𝐵‘𝑋) = 1𝑜)) → 𝐵 ∈
No ) |
40 | | simp11 1246 |
. . . . . . 7
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2𝑜) ∧ ((𝐵‘𝑋) = ∅ ∨ (𝐵‘𝑋) = 1𝑜)) → 𝐴 ∈
No ) |
41 | | sltval 32128 |
. . . . . . 7
⊢ ((𝐵 ∈
No ∧ 𝐴 ∈
No ) → (𝐵 <s 𝐴 ↔ ∃𝑥 ∈ On (∀𝑦 ∈ 𝑥 (𝐵‘𝑦) = (𝐴‘𝑦) ∧ (𝐵‘𝑥){〈1𝑜, ∅〉,
〈1𝑜, 2𝑜〉, 〈∅,
2𝑜〉} (𝐴‘𝑥)))) |
42 | 39, 40, 41 | syl2anc 696 |
. . . . . 6
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2𝑜) ∧ ((𝐵‘𝑋) = ∅ ∨ (𝐵‘𝑋) = 1𝑜)) → (𝐵 <s 𝐴 ↔ ∃𝑥 ∈ On (∀𝑦 ∈ 𝑥 (𝐵‘𝑦) = (𝐴‘𝑦) ∧ (𝐵‘𝑥){〈1𝑜, ∅〉,
〈1𝑜, 2𝑜〉, 〈∅,
2𝑜〉} (𝐴‘𝑥)))) |
43 | 38, 42 | mpbird 247 |
. . . . 5
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2𝑜) ∧ ((𝐵‘𝑋) = ∅ ∨ (𝐵‘𝑋) = 1𝑜)) → 𝐵 <s 𝐴) |
44 | 43 | 3expia 1115 |
. . . 4
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2𝑜)) → (((𝐵‘𝑋) = ∅ ∨ (𝐵‘𝑋) = 1𝑜) → 𝐵 <s 𝐴)) |
45 | 5, 44 | syld 47 |
. . 3
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2𝑜)) → (¬
(𝐵‘𝑋) = 2𝑜 → 𝐵 <s 𝐴)) |
46 | 45 | con1d 139 |
. 2
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2𝑜)) → (¬
𝐵 <s 𝐴 → (𝐵‘𝑋) = 2𝑜)) |
47 | 46 | 3impia 1110 |
1
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ 𝑋 ∈ On) ∧ ((𝐴 ↾ 𝑋) = (𝐵 ↾ 𝑋) ∧ (𝐴‘𝑋) = 2𝑜) ∧ ¬ 𝐵 <s 𝐴) → (𝐵‘𝑋) = 2𝑜) |