Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  noextenddif Structured version   Visualization version   GIF version

Theorem noextenddif 31946
Description: Calculate the place where a surreal and its extension differ. (Contributed by Scott Fenton, 22-Nov-2021.)
Hypothesis
Ref Expression
noextend.1 𝑋 ∈ {1𝑜, 2𝑜}
Assertion
Ref Expression
noextenddif (𝐴 No {𝑥 ∈ On ∣ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘𝑥)} = dom 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑋

Proof of Theorem noextenddif
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nodmon 31928 . . 3 (𝐴 No → dom 𝐴 ∈ On)
2 noextend.1 . . . . . 6 𝑋 ∈ {1𝑜, 2𝑜}
32nosgnn0i 31937 . . . . 5 ∅ ≠ 𝑋
43a1i 11 . . . 4 (𝐴 No → ∅ ≠ 𝑋)
5 nodmord 31931 . . . . . 6 (𝐴 No → Ord dom 𝐴)
6 ordirr 5779 . . . . . 6 (Ord dom 𝐴 → ¬ dom 𝐴 ∈ dom 𝐴)
75, 6syl 17 . . . . 5 (𝐴 No → ¬ dom 𝐴 ∈ dom 𝐴)
8 ndmfv 6256 . . . . 5 (¬ dom 𝐴 ∈ dom 𝐴 → (𝐴‘dom 𝐴) = ∅)
97, 8syl 17 . . . 4 (𝐴 No → (𝐴‘dom 𝐴) = ∅)
10 nofun 31927 . . . . . . 7 (𝐴 No → Fun 𝐴)
11 funfn 5956 . . . . . . 7 (Fun 𝐴𝐴 Fn dom 𝐴)
1210, 11sylib 208 . . . . . 6 (𝐴 No 𝐴 Fn dom 𝐴)
13 fnsng 5976 . . . . . . 7 ((dom 𝐴 ∈ On ∧ 𝑋 ∈ {1𝑜, 2𝑜}) → {⟨dom 𝐴, 𝑋⟩} Fn {dom 𝐴})
141, 2, 13sylancl 695 . . . . . 6 (𝐴 No → {⟨dom 𝐴, 𝑋⟩} Fn {dom 𝐴})
15 disjsn 4278 . . . . . . 7 ((dom 𝐴 ∩ {dom 𝐴}) = ∅ ↔ ¬ dom 𝐴 ∈ dom 𝐴)
167, 15sylibr 224 . . . . . 6 (𝐴 No → (dom 𝐴 ∩ {dom 𝐴}) = ∅)
17 snidg 4239 . . . . . . 7 (dom 𝐴 ∈ On → dom 𝐴 ∈ {dom 𝐴})
181, 17syl 17 . . . . . 6 (𝐴 No → dom 𝐴 ∈ {dom 𝐴})
19 fvun2 6309 . . . . . 6 ((𝐴 Fn dom 𝐴 ∧ {⟨dom 𝐴, 𝑋⟩} Fn {dom 𝐴} ∧ ((dom 𝐴 ∩ {dom 𝐴}) = ∅ ∧ dom 𝐴 ∈ {dom 𝐴})) → ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘dom 𝐴) = ({⟨dom 𝐴, 𝑋⟩}‘dom 𝐴))
2012, 14, 16, 18, 19syl112anc 1370 . . . . 5 (𝐴 No → ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘dom 𝐴) = ({⟨dom 𝐴, 𝑋⟩}‘dom 𝐴))
21 fvsng 6488 . . . . . 6 ((dom 𝐴 ∈ On ∧ 𝑋 ∈ {1𝑜, 2𝑜}) → ({⟨dom 𝐴, 𝑋⟩}‘dom 𝐴) = 𝑋)
221, 2, 21sylancl 695 . . . . 5 (𝐴 No → ({⟨dom 𝐴, 𝑋⟩}‘dom 𝐴) = 𝑋)
2320, 22eqtrd 2685 . . . 4 (𝐴 No → ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘dom 𝐴) = 𝑋)
244, 9, 233netr4d 2900 . . 3 (𝐴 No → (𝐴‘dom 𝐴) ≠ ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘dom 𝐴))
25 fveq2 6229 . . . . 5 (𝑥 = dom 𝐴 → (𝐴𝑥) = (𝐴‘dom 𝐴))
26 fveq2 6229 . . . . 5 (𝑥 = dom 𝐴 → ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘𝑥) = ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘dom 𝐴))
2725, 26neeq12d 2884 . . . 4 (𝑥 = dom 𝐴 → ((𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘𝑥) ↔ (𝐴‘dom 𝐴) ≠ ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘dom 𝐴)))
2827onintss 5813 . . 3 (dom 𝐴 ∈ On → ((𝐴‘dom 𝐴) ≠ ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘dom 𝐴) → {𝑥 ∈ On ∣ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘𝑥)} ⊆ dom 𝐴))
291, 24, 28sylc 65 . 2 (𝐴 No {𝑥 ∈ On ∣ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘𝑥)} ⊆ dom 𝐴)
30 eloni 5771 . . . . . . . 8 (𝑦 ∈ On → Ord 𝑦)
31 ordtri2 5796 . . . . . . . . . 10 ((Ord 𝑦 ∧ Ord dom 𝐴) → (𝑦 ∈ dom 𝐴 ↔ ¬ (𝑦 = dom 𝐴 ∨ dom 𝐴𝑦)))
32 eqcom 2658 . . . . . . . . . . . . 13 (𝑦 = dom 𝐴 ↔ dom 𝐴 = 𝑦)
3332orbi1i 541 . . . . . . . . . . . 12 ((𝑦 = dom 𝐴 ∨ dom 𝐴𝑦) ↔ (dom 𝐴 = 𝑦 ∨ dom 𝐴𝑦))
34 orcom 401 . . . . . . . . . . . 12 ((dom 𝐴 = 𝑦 ∨ dom 𝐴𝑦) ↔ (dom 𝐴𝑦 ∨ dom 𝐴 = 𝑦))
3533, 34bitri 264 . . . . . . . . . . 11 ((𝑦 = dom 𝐴 ∨ dom 𝐴𝑦) ↔ (dom 𝐴𝑦 ∨ dom 𝐴 = 𝑦))
3635notbii 309 . . . . . . . . . 10 (¬ (𝑦 = dom 𝐴 ∨ dom 𝐴𝑦) ↔ ¬ (dom 𝐴𝑦 ∨ dom 𝐴 = 𝑦))
3731, 36syl6bb 276 . . . . . . . . 9 ((Ord 𝑦 ∧ Ord dom 𝐴) → (𝑦 ∈ dom 𝐴 ↔ ¬ (dom 𝐴𝑦 ∨ dom 𝐴 = 𝑦)))
38 ordsseleq 5790 . . . . . . . . . . 11 ((Ord dom 𝐴 ∧ Ord 𝑦) → (dom 𝐴𝑦 ↔ (dom 𝐴𝑦 ∨ dom 𝐴 = 𝑦)))
3938notbid 307 . . . . . . . . . 10 ((Ord dom 𝐴 ∧ Ord 𝑦) → (¬ dom 𝐴𝑦 ↔ ¬ (dom 𝐴𝑦 ∨ dom 𝐴 = 𝑦)))
4039ancoms 468 . . . . . . . . 9 ((Ord 𝑦 ∧ Ord dom 𝐴) → (¬ dom 𝐴𝑦 ↔ ¬ (dom 𝐴𝑦 ∨ dom 𝐴 = 𝑦)))
4137, 40bitr4d 271 . . . . . . . 8 ((Ord 𝑦 ∧ Ord dom 𝐴) → (𝑦 ∈ dom 𝐴 ↔ ¬ dom 𝐴𝑦))
4230, 5, 41syl2anr 494 . . . . . . 7 ((𝐴 No 𝑦 ∈ On) → (𝑦 ∈ dom 𝐴 ↔ ¬ dom 𝐴𝑦))
43123ad2ant1 1102 . . . . . . . . . 10 ((𝐴 No 𝑦 ∈ On ∧ 𝑦 ∈ dom 𝐴) → 𝐴 Fn dom 𝐴)
44143ad2ant1 1102 . . . . . . . . . 10 ((𝐴 No 𝑦 ∈ On ∧ 𝑦 ∈ dom 𝐴) → {⟨dom 𝐴, 𝑋⟩} Fn {dom 𝐴})
45163ad2ant1 1102 . . . . . . . . . 10 ((𝐴 No 𝑦 ∈ On ∧ 𝑦 ∈ dom 𝐴) → (dom 𝐴 ∩ {dom 𝐴}) = ∅)
46 simp3 1083 . . . . . . . . . 10 ((𝐴 No 𝑦 ∈ On ∧ 𝑦 ∈ dom 𝐴) → 𝑦 ∈ dom 𝐴)
47 fvun1 6308 . . . . . . . . . 10 ((𝐴 Fn dom 𝐴 ∧ {⟨dom 𝐴, 𝑋⟩} Fn {dom 𝐴} ∧ ((dom 𝐴 ∩ {dom 𝐴}) = ∅ ∧ 𝑦 ∈ dom 𝐴)) → ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘𝑦) = (𝐴𝑦))
4843, 44, 45, 46, 47syl112anc 1370 . . . . . . . . 9 ((𝐴 No 𝑦 ∈ On ∧ 𝑦 ∈ dom 𝐴) → ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘𝑦) = (𝐴𝑦))
4948eqcomd 2657 . . . . . . . 8 ((𝐴 No 𝑦 ∈ On ∧ 𝑦 ∈ dom 𝐴) → (𝐴𝑦) = ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘𝑦))
50493expia 1286 . . . . . . 7 ((𝐴 No 𝑦 ∈ On) → (𝑦 ∈ dom 𝐴 → (𝐴𝑦) = ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘𝑦)))
5142, 50sylbird 250 . . . . . 6 ((𝐴 No 𝑦 ∈ On) → (¬ dom 𝐴𝑦 → (𝐴𝑦) = ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘𝑦)))
5251necon1ad 2840 . . . . 5 ((𝐴 No 𝑦 ∈ On) → ((𝐴𝑦) ≠ ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘𝑦) → dom 𝐴𝑦))
5352ralrimiva 2995 . . . 4 (𝐴 No → ∀𝑦 ∈ On ((𝐴𝑦) ≠ ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘𝑦) → dom 𝐴𝑦))
54 fveq2 6229 . . . . . 6 (𝑥 = 𝑦 → (𝐴𝑥) = (𝐴𝑦))
55 fveq2 6229 . . . . . 6 (𝑥 = 𝑦 → ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘𝑥) = ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘𝑦))
5654, 55neeq12d 2884 . . . . 5 (𝑥 = 𝑦 → ((𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘𝑥) ↔ (𝐴𝑦) ≠ ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘𝑦)))
5756ralrab 3401 . . . 4 (∀𝑦 ∈ {𝑥 ∈ On ∣ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘𝑥)}dom 𝐴𝑦 ↔ ∀𝑦 ∈ On ((𝐴𝑦) ≠ ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘𝑦) → dom 𝐴𝑦))
5853, 57sylibr 224 . . 3 (𝐴 No → ∀𝑦 ∈ {𝑥 ∈ On ∣ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘𝑥)}dom 𝐴𝑦)
59 ssint 4525 . . 3 (dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘𝑥)} ↔ ∀𝑦 ∈ {𝑥 ∈ On ∣ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘𝑥)}dom 𝐴𝑦)
6058, 59sylibr 224 . 2 (𝐴 No → dom 𝐴 {𝑥 ∈ On ∣ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘𝑥)})
6129, 60eqssd 3653 1 (𝐴 No {𝑥 ∈ On ∣ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 𝑋⟩})‘𝑥)} = dom 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823  wral 2941  {crab 2945  cun 3605  cin 3606  wss 3607  c0 3948  {csn 4210  {cpr 4212  cop 4216   cint 4507  dom cdm 5143  Ord word 5760  Oncon0 5761  Fun wfun 5920   Fn wfn 5921  cfv 5926  1𝑜c1o 7598  2𝑜c2o 7599   No csur 31918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-ord 5764  df-on 5765  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-1o 7605  df-2o 7606  df-no 31921
This theorem is referenced by:  noextendlt  31947  noextendgt  31948
  Copyright terms: Public domain W3C validator