Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  noetalem4 Structured version   Visualization version   GIF version

Theorem noetalem4 32093
Description: Lemma for noeta 32095. Bound the birthday of 𝑍 above. (Contributed by Scott Fenton, 6-Dec-2021.)
Hypotheses
Ref Expression
noetalem.1 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
noetalem.2 𝑍 = (𝑆 ∪ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1𝑜}))
Assertion
Ref Expression
noetalem4 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) → ( bday 𝑍) ⊆ suc ( bday “ (𝐴𝐵)))
Distinct variable group:   𝐴,𝑔,𝑢,𝑣,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑆(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑍(𝑥,𝑦,𝑣,𝑢,𝑔)

Proof of Theorem noetalem4
StepHypRef Expression
1 noetalem.1 . . . . . . 7 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2𝑜⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
21nosupno 32076 . . . . . 6 ((𝐴 No 𝐴 ∈ V) → 𝑆 No )
3 bdayval 32028 . . . . . 6 (𝑆 No → ( bday 𝑆) = dom 𝑆)
42, 3syl 17 . . . . 5 ((𝐴 No 𝐴 ∈ V) → ( bday 𝑆) = dom 𝑆)
51nosupbday 32078 . . . . 5 ((𝐴 No 𝐴 ∈ V) → ( bday 𝑆) ⊆ suc ( bday 𝐴))
64, 5eqsstr3d 3746 . . . 4 ((𝐴 No 𝐴 ∈ V) → dom 𝑆 ⊆ suc ( bday 𝐴))
76adantr 472 . . 3 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) → dom 𝑆 ⊆ suc ( bday 𝐴))
8 unss1 3890 . . 3 (dom 𝑆 ⊆ suc ( bday 𝐴) → (dom 𝑆 ∪ suc ( bday 𝐵)) ⊆ (suc ( bday 𝐴) ∪ suc ( bday 𝐵)))
97, 8syl 17 . 2 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) → (dom 𝑆 ∪ suc ( bday 𝐵)) ⊆ (suc ( bday 𝐴) ∪ suc ( bday 𝐵)))
10 simpll 807 . . . . 5 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) → 𝐴 No )
11 simplr 809 . . . . 5 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) → 𝐴 ∈ V)
12 simprr 813 . . . . 5 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) → 𝐵 ∈ V)
13 noetalem.2 . . . . . 6 𝑍 = (𝑆 ∪ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1𝑜}))
141, 13noetalem1 32090 . . . . 5 ((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝑍 No )
1510, 11, 12, 14syl3anc 1439 . . . 4 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) → 𝑍 No )
16 bdayval 32028 . . . 4 (𝑍 No → ( bday 𝑍) = dom 𝑍)
1715, 16syl 17 . . 3 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) → ( bday 𝑍) = dom 𝑍)
1813dmeqi 5432 . . . 4 dom 𝑍 = dom (𝑆 ∪ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1𝑜}))
19 dmun 5438 . . . . 5 dom (𝑆 ∪ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1𝑜})) = (dom 𝑆 ∪ dom ((suc ( bday 𝐵) ∖ dom 𝑆) × {1𝑜}))
20 1on 7687 . . . . . . . . . 10 1𝑜 ∈ On
2120elexi 3317 . . . . . . . . 9 1𝑜 ∈ V
2221snnz 4415 . . . . . . . 8 {1𝑜} ≠ ∅
23 dmxp 5451 . . . . . . . 8 ({1𝑜} ≠ ∅ → dom ((suc ( bday 𝐵) ∖ dom 𝑆) × {1𝑜}) = (suc ( bday 𝐵) ∖ dom 𝑆))
2422, 23ax-mp 5 . . . . . . 7 dom ((suc ( bday 𝐵) ∖ dom 𝑆) × {1𝑜}) = (suc ( bday 𝐵) ∖ dom 𝑆)
2524uneq2i 3872 . . . . . 6 (dom 𝑆 ∪ dom ((suc ( bday 𝐵) ∖ dom 𝑆) × {1𝑜})) = (dom 𝑆 ∪ (suc ( bday 𝐵) ∖ dom 𝑆))
26 undif2 4152 . . . . . 6 (dom 𝑆 ∪ (suc ( bday 𝐵) ∖ dom 𝑆)) = (dom 𝑆 ∪ suc ( bday 𝐵))
2725, 26eqtri 2746 . . . . 5 (dom 𝑆 ∪ dom ((suc ( bday 𝐵) ∖ dom 𝑆) × {1𝑜})) = (dom 𝑆 ∪ suc ( bday 𝐵))
2819, 27eqtri 2746 . . . 4 dom (𝑆 ∪ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1𝑜})) = (dom 𝑆 ∪ suc ( bday 𝐵))
2918, 28eqtri 2746 . . 3 dom 𝑍 = (dom 𝑆 ∪ suc ( bday 𝐵))
3017, 29syl6eq 2774 . 2 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) → ( bday 𝑍) = (dom 𝑆 ∪ suc ( bday 𝐵)))
31 imaundi 5655 . . . . . . 7 ( bday “ (𝐴𝐵)) = (( bday 𝐴) ∪ ( bday 𝐵))
3231unieqi 4553 . . . . . 6 ( bday “ (𝐴𝐵)) = (( bday 𝐴) ∪ ( bday 𝐵))
33 uniun 4564 . . . . . 6 (( bday 𝐴) ∪ ( bday 𝐵)) = ( ( bday 𝐴) ∪ ( bday 𝐵))
3432, 33eqtri 2746 . . . . 5 ( bday “ (𝐴𝐵)) = ( ( bday 𝐴) ∪ ( bday 𝐵))
35 suceq 5903 . . . . 5 ( ( bday “ (𝐴𝐵)) = ( ( bday 𝐴) ∪ ( bday 𝐵)) → suc ( bday “ (𝐴𝐵)) = suc ( ( bday 𝐴) ∪ ( bday 𝐵)))
3634, 35ax-mp 5 . . . 4 suc ( bday “ (𝐴𝐵)) = suc ( ( bday 𝐴) ∪ ( bday 𝐵))
37 imassrn 5587 . . . . . . 7 ( bday 𝐴) ⊆ ran bday
38 bdayfo 32055 . . . . . . . 8 bday : No onto→On
39 forn 6231 . . . . . . . 8 ( bday : No onto→On → ran bday = On)
4038, 39ax-mp 5 . . . . . . 7 ran bday = On
4137, 40sseqtri 3743 . . . . . 6 ( bday 𝐴) ⊆ On
42 ssorduni 7102 . . . . . 6 (( bday 𝐴) ⊆ On → Ord ( bday 𝐴))
4341, 42ax-mp 5 . . . . 5 Ord ( bday 𝐴)
44 imassrn 5587 . . . . . . 7 ( bday 𝐵) ⊆ ran bday
4544, 40sseqtri 3743 . . . . . 6 ( bday 𝐵) ⊆ On
46 ssorduni 7102 . . . . . 6 (( bday 𝐵) ⊆ On → Ord ( bday 𝐵))
4745, 46ax-mp 5 . . . . 5 Ord ( bday 𝐵)
48 ordsucun 7142 . . . . 5 ((Ord ( bday 𝐴) ∧ Ord ( bday 𝐵)) → suc ( ( bday 𝐴) ∪ ( bday 𝐵)) = (suc ( bday 𝐴) ∪ suc ( bday 𝐵)))
4943, 47, 48mp2an 710 . . . 4 suc ( ( bday 𝐴) ∪ ( bday 𝐵)) = (suc ( bday 𝐴) ∪ suc ( bday 𝐵))
5036, 49eqtri 2746 . . 3 suc ( bday “ (𝐴𝐵)) = (suc ( bday 𝐴) ∪ suc ( bday 𝐵))
5150a1i 11 . 2 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) → suc ( bday “ (𝐴𝐵)) = (suc ( bday 𝐴) ∪ suc ( bday 𝐵)))
529, 30, 513sstr4d 3754 1 (((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V)) → ( bday 𝑍) ⊆ suc ( bday “ (𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  w3a 1072   = wceq 1596  wcel 2103  {cab 2710  wne 2896  wral 3014  wrex 3015  Vcvv 3304  cdif 3677  cun 3678  wss 3680  c0 4023  ifcif 4194  {csn 4285  cop 4291   cuni 4544   class class class wbr 4760  cmpt 4837   × cxp 5216  dom cdm 5218  ran crn 5219  cres 5220  cima 5221  Ord word 5835  Oncon0 5836  suc csuc 5838  cio 5962  ontowfo 5999  cfv 6001  crio 6725  1𝑜c1o 7673  2𝑜c2o 7674   No csur 32020   <s cslt 32021   bday cbday 32022
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-rep 4879  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-ral 3019  df-rex 3020  df-reu 3021  df-rmo 3022  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-pss 3696  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-tp 4290  df-op 4292  df-uni 4545  df-iun 4630  df-br 4761  df-opab 4821  df-mpt 4838  df-tr 4861  df-id 5128  df-eprel 5133  df-po 5139  df-so 5140  df-fr 5177  df-we 5179  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-ord 5839  df-on 5840  df-suc 5842  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-riota 6726  df-1o 7680  df-2o 7681  df-no 32023  df-slt 32024  df-bday 32025
This theorem is referenced by:  noetalem5  32094
  Copyright terms: Public domain W3C validator