![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nodmord | Structured version Visualization version GIF version |
Description: The domain of a surreal has the ordinal property. (Contributed by Scott Fenton, 16-Jun-2011.) |
Ref | Expression |
---|---|
nodmord | ⊢ (𝐴 ∈ No → Ord dom 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nodmon 32030 | . 2 ⊢ (𝐴 ∈ No → dom 𝐴 ∈ On) | |
2 | eloni 5846 | . 2 ⊢ (dom 𝐴 ∈ On → Ord dom 𝐴) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐴 ∈ No → Ord dom 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2103 dom cdm 5218 Ord word 5835 Oncon0 5836 No csur 32020 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-rep 4879 ax-sep 4889 ax-nul 4897 ax-pr 5011 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ne 2897 df-ral 3019 df-rex 3020 df-reu 3021 df-rab 3023 df-v 3306 df-sbc 3542 df-csb 3640 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-nul 4024 df-if 4195 df-sn 4286 df-pr 4288 df-op 4292 df-uni 4545 df-iun 4630 df-br 4761 df-opab 4821 df-mpt 4838 df-tr 4861 df-id 5128 df-po 5139 df-so 5140 df-fr 5177 df-we 5179 df-xp 5224 df-rel 5225 df-cnv 5226 df-co 5227 df-dm 5228 df-rn 5229 df-res 5230 df-ima 5231 df-ord 5839 df-on 5840 df-iota 5964 df-fun 6003 df-fn 6004 df-f 6005 df-f1 6006 df-fo 6007 df-f1o 6008 df-fv 6009 df-no 32023 |
This theorem is referenced by: noseponlem 32044 nosepon 32045 noextend 32046 noextenddif 32048 noextendlt 32049 noextendgt 32050 nolesgn2ores 32052 fvnobday 32056 nosepssdm 32063 nosupbday 32078 nosupres 32080 nosupbnd1lem1 32081 nosupbnd1lem3 32083 nosupbnd1lem5 32085 nosupbnd2lem1 32088 nosupbnd2 32089 noetalem3 32092 |
Copyright terms: Public domain | W3C validator |