Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nocvxminlem Structured version   Visualization version   GIF version

Theorem nocvxminlem 32195
Description: Lemma for nocvxmin 32196. Given two birthday-minimal elements of a convex class of surreals, they are not comparable. (Contributed by Scott Fenton, 30-Jun-2011.)
Assertion
Ref Expression
nocvxminlem ((𝐴 No ∧ ∀𝑥𝐴𝑦𝐴𝑧 No ((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴)) → (((𝑋𝐴𝑌𝐴) ∧ (( bday 𝑋) = ( bday 𝐴) ∧ ( bday 𝑌) = ( bday 𝐴))) → ¬ 𝑋 <s 𝑌))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝑋,𝑦,𝑧   𝑦,𝑌,𝑧
Allowed substitution hint:   𝑌(𝑥)

Proof of Theorem nocvxminlem
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 breq1 4803 . . . . . . . . . . . . . 14 (𝑥 = 𝑋 → (𝑥 <s 𝑧𝑋 <s 𝑧))
21anbi1d 743 . . . . . . . . . . . . 13 (𝑥 = 𝑋 → ((𝑥 <s 𝑧𝑧 <s 𝑦) ↔ (𝑋 <s 𝑧𝑧 <s 𝑦)))
32imbi1d 330 . . . . . . . . . . . 12 (𝑥 = 𝑋 → (((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴) ↔ ((𝑋 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴)))
43ralbidv 3120 . . . . . . . . . . 11 (𝑥 = 𝑋 → (∀𝑧 No ((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴) ↔ ∀𝑧 No ((𝑋 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴)))
5 breq2 4804 . . . . . . . . . . . . . 14 (𝑦 = 𝑌 → (𝑧 <s 𝑦𝑧 <s 𝑌))
65anbi2d 742 . . . . . . . . . . . . 13 (𝑦 = 𝑌 → ((𝑋 <s 𝑧𝑧 <s 𝑦) ↔ (𝑋 <s 𝑧𝑧 <s 𝑌)))
76imbi1d 330 . . . . . . . . . . . 12 (𝑦 = 𝑌 → (((𝑋 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴) ↔ ((𝑋 <s 𝑧𝑧 <s 𝑌) → 𝑧𝐴)))
87ralbidv 3120 . . . . . . . . . . 11 (𝑦 = 𝑌 → (∀𝑧 No ((𝑋 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴) ↔ ∀𝑧 No ((𝑋 <s 𝑧𝑧 <s 𝑌) → 𝑧𝐴)))
94, 8rspc2v 3457 . . . . . . . . . 10 ((𝑋𝐴𝑌𝐴) → (∀𝑥𝐴𝑦𝐴𝑧 No ((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴) → ∀𝑧 No ((𝑋 <s 𝑧𝑧 <s 𝑌) → 𝑧𝐴)))
10 breq2 4804 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑤 → (𝑋 <s 𝑧𝑋 <s 𝑤))
11 breq1 4803 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑤 → (𝑧 <s 𝑌𝑤 <s 𝑌))
1210, 11anbi12d 749 . . . . . . . . . . . . . . 15 (𝑧 = 𝑤 → ((𝑋 <s 𝑧𝑧 <s 𝑌) ↔ (𝑋 <s 𝑤𝑤 <s 𝑌)))
13 eleq1w 2818 . . . . . . . . . . . . . . 15 (𝑧 = 𝑤 → (𝑧𝐴𝑤𝐴))
1412, 13imbi12d 333 . . . . . . . . . . . . . 14 (𝑧 = 𝑤 → (((𝑋 <s 𝑧𝑧 <s 𝑌) → 𝑧𝐴) ↔ ((𝑋 <s 𝑤𝑤 <s 𝑌) → 𝑤𝐴)))
1514rspcv 3441 . . . . . . . . . . . . 13 (𝑤 No → (∀𝑧 No ((𝑋 <s 𝑧𝑧 <s 𝑌) → 𝑧𝐴) → ((𝑋 <s 𝑤𝑤 <s 𝑌) → 𝑤𝐴)))
16 bdaydm 32192 . . . . . . . . . . . . . . . . . . . . . 22 dom bday = No
1716sseq2i 3767 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ⊆ dom bday 𝐴 No )
18 bdayfun 32190 . . . . . . . . . . . . . . . . . . . . . 22 Fun bday
19 funfvima2 6652 . . . . . . . . . . . . . . . . . . . . . 22 ((Fun bday 𝐴 ⊆ dom bday ) → (𝑤𝐴 → ( bday 𝑤) ∈ ( bday 𝐴)))
2018, 19mpan 708 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 ⊆ dom bday → (𝑤𝐴 → ( bday 𝑤) ∈ ( bday 𝐴)))
2117, 20sylbir 225 . . . . . . . . . . . . . . . . . . . 20 (𝐴 No → (𝑤𝐴 → ( bday 𝑤) ∈ ( bday 𝐴)))
2221imp 444 . . . . . . . . . . . . . . . . . . 19 ((𝐴 No 𝑤𝐴) → ( bday 𝑤) ∈ ( bday 𝐴))
23 intss1 4640 . . . . . . . . . . . . . . . . . . 19 (( bday 𝑤) ∈ ( bday 𝐴) → ( bday 𝐴) ⊆ ( bday 𝑤))
2422, 23syl 17 . . . . . . . . . . . . . . . . . 18 ((𝐴 No 𝑤𝐴) → ( bday 𝐴) ⊆ ( bday 𝑤))
25 imassrn 5631 . . . . . . . . . . . . . . . . . . . . 21 ( bday 𝐴) ⊆ ran bday
26 bdayrn 32193 . . . . . . . . . . . . . . . . . . . . 21 ran bday = On
2725, 26sseqtri 3774 . . . . . . . . . . . . . . . . . . . 20 ( bday 𝐴) ⊆ On
28 ne0i 4060 . . . . . . . . . . . . . . . . . . . . 21 (( bday 𝑤) ∈ ( bday 𝐴) → ( bday 𝐴) ≠ ∅)
2922, 28syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 No 𝑤𝐴) → ( bday 𝐴) ≠ ∅)
30 oninton 7161 . . . . . . . . . . . . . . . . . . . 20 ((( bday 𝐴) ⊆ On ∧ ( bday 𝐴) ≠ ∅) → ( bday 𝐴) ∈ On)
3127, 29, 30sylancr 698 . . . . . . . . . . . . . . . . . . 19 ((𝐴 No 𝑤𝐴) → ( bday 𝐴) ∈ On)
32 bdayelon 32194 . . . . . . . . . . . . . . . . . . 19 ( bday 𝑤) ∈ On
33 ontri1 5914 . . . . . . . . . . . . . . . . . . 19 (( ( bday 𝐴) ∈ On ∧ ( bday 𝑤) ∈ On) → ( ( bday 𝐴) ⊆ ( bday 𝑤) ↔ ¬ ( bday 𝑤) ∈ ( bday 𝐴)))
3431, 32, 33sylancl 697 . . . . . . . . . . . . . . . . . 18 ((𝐴 No 𝑤𝐴) → ( ( bday 𝐴) ⊆ ( bday 𝑤) ↔ ¬ ( bday 𝑤) ∈ ( bday 𝐴)))
3524, 34mpbid 222 . . . . . . . . . . . . . . . . 17 ((𝐴 No 𝑤𝐴) → ¬ ( bday 𝑤) ∈ ( bday 𝐴))
3635ex 449 . . . . . . . . . . . . . . . 16 (𝐴 No → (𝑤𝐴 → ¬ ( bday 𝑤) ∈ ( bday 𝐴)))
37 eleq2 2824 . . . . . . . . . . . . . . . . . 18 (( bday 𝑋) = ( bday 𝐴) → (( bday 𝑤) ∈ ( bday 𝑋) ↔ ( bday 𝑤) ∈ ( bday 𝐴)))
3837notbid 307 . . . . . . . . . . . . . . . . 17 (( bday 𝑋) = ( bday 𝐴) → (¬ ( bday 𝑤) ∈ ( bday 𝑋) ↔ ¬ ( bday 𝑤) ∈ ( bday 𝐴)))
3938biimprcd 240 . . . . . . . . . . . . . . . 16 (¬ ( bday 𝑤) ∈ ( bday 𝐴) → (( bday 𝑋) = ( bday 𝐴) → ¬ ( bday 𝑤) ∈ ( bday 𝑋)))
4036, 39syl6 35 . . . . . . . . . . . . . . 15 (𝐴 No → (𝑤𝐴 → (( bday 𝑋) = ( bday 𝐴) → ¬ ( bday 𝑤) ∈ ( bday 𝑋))))
4140com3l 89 . . . . . . . . . . . . . 14 (𝑤𝐴 → (( bday 𝑋) = ( bday 𝐴) → (𝐴 No → ¬ ( bday 𝑤) ∈ ( bday 𝑋))))
4241adantrd 485 . . . . . . . . . . . . 13 (𝑤𝐴 → ((( bday 𝑋) = ( bday 𝐴) ∧ ( bday 𝑌) = ( bday 𝐴)) → (𝐴 No → ¬ ( bday 𝑤) ∈ ( bday 𝑋))))
4315, 42syl8 76 . . . . . . . . . . . 12 (𝑤 No → (∀𝑧 No ((𝑋 <s 𝑧𝑧 <s 𝑌) → 𝑧𝐴) → ((𝑋 <s 𝑤𝑤 <s 𝑌) → ((( bday 𝑋) = ( bday 𝐴) ∧ ( bday 𝑌) = ( bday 𝐴)) → (𝐴 No → ¬ ( bday 𝑤) ∈ ( bday 𝑋))))))
4443com35 98 . . . . . . . . . . 11 (𝑤 No → (∀𝑧 No ((𝑋 <s 𝑧𝑧 <s 𝑌) → 𝑧𝐴) → (𝐴 No → ((( bday 𝑋) = ( bday 𝐴) ∧ ( bday 𝑌) = ( bday 𝐴)) → ((𝑋 <s 𝑤𝑤 <s 𝑌) → ¬ ( bday 𝑤) ∈ ( bday 𝑋))))))
4544com4l 92 . . . . . . . . . 10 (∀𝑧 No ((𝑋 <s 𝑧𝑧 <s 𝑌) → 𝑧𝐴) → (𝐴 No → ((( bday 𝑋) = ( bday 𝐴) ∧ ( bday 𝑌) = ( bday 𝐴)) → (𝑤 No → ((𝑋 <s 𝑤𝑤 <s 𝑌) → ¬ ( bday 𝑤) ∈ ( bday 𝑋))))))
469, 45syl6 35 . . . . . . . . 9 ((𝑋𝐴𝑌𝐴) → (∀𝑥𝐴𝑦𝐴𝑧 No ((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴) → (𝐴 No → ((( bday 𝑋) = ( bday 𝐴) ∧ ( bday 𝑌) = ( bday 𝐴)) → (𝑤 No → ((𝑋 <s 𝑤𝑤 <s 𝑌) → ¬ ( bday 𝑤) ∈ ( bday 𝑋)))))))
4746com3l 89 . . . . . . . 8 (∀𝑥𝐴𝑦𝐴𝑧 No ((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴) → (𝐴 No → ((𝑋𝐴𝑌𝐴) → ((( bday 𝑋) = ( bday 𝐴) ∧ ( bday 𝑌) = ( bday 𝐴)) → (𝑤 No → ((𝑋 <s 𝑤𝑤 <s 𝑌) → ¬ ( bday 𝑤) ∈ ( bday 𝑋)))))))
4847impcom 445 . . . . . . 7 ((𝐴 No ∧ ∀𝑥𝐴𝑦𝐴𝑧 No ((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴)) → ((𝑋𝐴𝑌𝐴) → ((( bday 𝑋) = ( bday 𝐴) ∧ ( bday 𝑌) = ( bday 𝐴)) → (𝑤 No → ((𝑋 <s 𝑤𝑤 <s 𝑌) → ¬ ( bday 𝑤) ∈ ( bday 𝑋))))))
4948imp42 621 . . . . . 6 ((((𝐴 No ∧ ∀𝑥𝐴𝑦𝐴𝑧 No ((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴)) ∧ ((𝑋𝐴𝑌𝐴) ∧ (( bday 𝑋) = ( bday 𝐴) ∧ ( bday 𝑌) = ( bday 𝐴)))) ∧ 𝑤 No ) → ((𝑋 <s 𝑤𝑤 <s 𝑌) → ¬ ( bday 𝑤) ∈ ( bday 𝑋)))
5049con2d 129 . . . . 5 ((((𝐴 No ∧ ∀𝑥𝐴𝑦𝐴𝑧 No ((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴)) ∧ ((𝑋𝐴𝑌𝐴) ∧ (( bday 𝑋) = ( bday 𝐴) ∧ ( bday 𝑌) = ( bday 𝐴)))) ∧ 𝑤 No ) → (( bday 𝑤) ∈ ( bday 𝑋) → ¬ (𝑋 <s 𝑤𝑤 <s 𝑌)))
51 3anass 1081 . . . . . . 7 ((( bday 𝑤) ∈ ( bday 𝑋) ∧ 𝑋 <s 𝑤𝑤 <s 𝑌) ↔ (( bday 𝑤) ∈ ( bday 𝑋) ∧ (𝑋 <s 𝑤𝑤 <s 𝑌)))
5251notbii 309 . . . . . 6 (¬ (( bday 𝑤) ∈ ( bday 𝑋) ∧ 𝑋 <s 𝑤𝑤 <s 𝑌) ↔ ¬ (( bday 𝑤) ∈ ( bday 𝑋) ∧ (𝑋 <s 𝑤𝑤 <s 𝑌)))
53 imnan 437 . . . . . 6 ((( bday 𝑤) ∈ ( bday 𝑋) → ¬ (𝑋 <s 𝑤𝑤 <s 𝑌)) ↔ ¬ (( bday 𝑤) ∈ ( bday 𝑋) ∧ (𝑋 <s 𝑤𝑤 <s 𝑌)))
5452, 53bitr4i 267 . . . . 5 (¬ (( bday 𝑤) ∈ ( bday 𝑋) ∧ 𝑋 <s 𝑤𝑤 <s 𝑌) ↔ (( bday 𝑤) ∈ ( bday 𝑋) → ¬ (𝑋 <s 𝑤𝑤 <s 𝑌)))
5550, 54sylibr 224 . . . 4 ((((𝐴 No ∧ ∀𝑥𝐴𝑦𝐴𝑧 No ((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴)) ∧ ((𝑋𝐴𝑌𝐴) ∧ (( bday 𝑋) = ( bday 𝐴) ∧ ( bday 𝑌) = ( bday 𝐴)))) ∧ 𝑤 No ) → ¬ (( bday 𝑤) ∈ ( bday 𝑋) ∧ 𝑋 <s 𝑤𝑤 <s 𝑌))
5655nrexdv 3135 . . 3 (((𝐴 No ∧ ∀𝑥𝐴𝑦𝐴𝑧 No ((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴)) ∧ ((𝑋𝐴𝑌𝐴) ∧ (( bday 𝑋) = ( bday 𝐴) ∧ ( bday 𝑌) = ( bday 𝐴)))) → ¬ ∃𝑤 No (( bday 𝑤) ∈ ( bday 𝑋) ∧ 𝑋 <s 𝑤𝑤 <s 𝑌))
57 ssel 3734 . . . . . . . . 9 (𝐴 No → (𝑋𝐴𝑋 No ))
58 ssel 3734 . . . . . . . . 9 (𝐴 No → (𝑌𝐴𝑌 No ))
5957, 58anim12d 587 . . . . . . . 8 (𝐴 No → ((𝑋𝐴𝑌𝐴) → (𝑋 No 𝑌 No )))
6059imp 444 . . . . . . 7 ((𝐴 No ∧ (𝑋𝐴𝑌𝐴)) → (𝑋 No 𝑌 No ))
61 eqtr3 2777 . . . . . . 7 ((( bday 𝑋) = ( bday 𝐴) ∧ ( bday 𝑌) = ( bday 𝐴)) → ( bday 𝑋) = ( bday 𝑌))
6260, 61anim12i 591 . . . . . 6 (((𝐴 No ∧ (𝑋𝐴𝑌𝐴)) ∧ (( bday 𝑋) = ( bday 𝐴) ∧ ( bday 𝑌) = ( bday 𝐴))) → ((𝑋 No 𝑌 No ) ∧ ( bday 𝑋) = ( bday 𝑌)))
6362anasss 682 . . . . 5 ((𝐴 No ∧ ((𝑋𝐴𝑌𝐴) ∧ (( bday 𝑋) = ( bday 𝐴) ∧ ( bday 𝑌) = ( bday 𝐴)))) → ((𝑋 No 𝑌 No ) ∧ ( bday 𝑋) = ( bday 𝑌)))
6463adantlr 753 . . . 4 (((𝐴 No ∧ ∀𝑥𝐴𝑦𝐴𝑧 No ((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴)) ∧ ((𝑋𝐴𝑌𝐴) ∧ (( bday 𝑋) = ( bday 𝐴) ∧ ( bday 𝑌) = ( bday 𝐴)))) → ((𝑋 No 𝑌 No ) ∧ ( bday 𝑋) = ( bday 𝑌)))
65 nodense 32144 . . . . 5 (((𝑋 No 𝑌 No ) ∧ (( bday 𝑋) = ( bday 𝑌) ∧ 𝑋 <s 𝑌)) → ∃𝑤 No (( bday 𝑤) ∈ ( bday 𝑋) ∧ 𝑋 <s 𝑤𝑤 <s 𝑌))
6665anassrs 683 . . . 4 ((((𝑋 No 𝑌 No ) ∧ ( bday 𝑋) = ( bday 𝑌)) ∧ 𝑋 <s 𝑌) → ∃𝑤 No (( bday 𝑤) ∈ ( bday 𝑋) ∧ 𝑋 <s 𝑤𝑤 <s 𝑌))
6764, 66sylan 489 . . 3 ((((𝐴 No ∧ ∀𝑥𝐴𝑦𝐴𝑧 No ((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴)) ∧ ((𝑋𝐴𝑌𝐴) ∧ (( bday 𝑋) = ( bday 𝐴) ∧ ( bday 𝑌) = ( bday 𝐴)))) ∧ 𝑋 <s 𝑌) → ∃𝑤 No (( bday 𝑤) ∈ ( bday 𝑋) ∧ 𝑋 <s 𝑤𝑤 <s 𝑌))
6856, 67mtand 694 . 2 (((𝐴 No ∧ ∀𝑥𝐴𝑦𝐴𝑧 No ((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴)) ∧ ((𝑋𝐴𝑌𝐴) ∧ (( bday 𝑋) = ( bday 𝐴) ∧ ( bday 𝑌) = ( bday 𝐴)))) → ¬ 𝑋 <s 𝑌)
6968ex 449 1 ((𝐴 No ∧ ∀𝑥𝐴𝑦𝐴𝑧 No ((𝑥 <s 𝑧𝑧 <s 𝑦) → 𝑧𝐴)) → (((𝑋𝐴𝑌𝐴) ∧ (( bday 𝑋) = ( bday 𝐴) ∧ ( bday 𝑌) = ( bday 𝐴))) → ¬ 𝑋 <s 𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1072   = wceq 1628  wcel 2135  wne 2928  wral 3046  wrex 3047  wss 3711  c0 4054   cint 4623   class class class wbr 4800  dom cdm 5262  ran crn 5263  cima 5265  Oncon0 5880  Fun wfun 6039  cfv 6045   No csur 32095   <s cslt 32096   bday cbday 32097
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1867  ax-4 1882  ax-5 1984  ax-6 2050  ax-7 2086  ax-8 2137  ax-9 2144  ax-10 2164  ax-11 2179  ax-12 2192  ax-13 2387  ax-ext 2736  ax-rep 4919  ax-sep 4929  ax-nul 4937  ax-pow 4988  ax-pr 5051  ax-un 7110
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1631  df-ex 1850  df-nf 1855  df-sb 2043  df-eu 2607  df-mo 2608  df-clab 2743  df-cleq 2749  df-clel 2752  df-nfc 2887  df-ne 2929  df-ral 3051  df-rex 3052  df-reu 3053  df-rab 3055  df-v 3338  df-sbc 3573  df-csb 3671  df-dif 3714  df-un 3716  df-in 3718  df-ss 3725  df-pss 3727  df-nul 4055  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4585  df-int 4624  df-iun 4670  df-br 4801  df-opab 4861  df-mpt 4878  df-tr 4901  df-id 5170  df-eprel 5175  df-po 5183  df-so 5184  df-fr 5221  df-we 5223  df-xp 5268  df-rel 5269  df-cnv 5270  df-co 5271  df-dm 5272  df-rn 5273  df-res 5274  df-ima 5275  df-ord 5883  df-on 5884  df-suc 5886  df-iota 6008  df-fun 6047  df-fn 6048  df-f 6049  df-f1 6050  df-fo 6051  df-f1o 6052  df-fv 6053  df-1o 7725  df-2o 7726  df-no 32098  df-slt 32099  df-bday 32100
This theorem is referenced by:  nocvxmin  32196
  Copyright terms: Public domain W3C validator