Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnwos Structured version   Visualization version   GIF version

Theorem nnwos 11948
 Description: Well-ordering principle: any nonempty set of positive integers has a least element (schema form). (Contributed by NM, 17-Aug-2001.)
Hypothesis
Ref Expression
nnwos.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
nnwos (∃𝑥 ∈ ℕ 𝜑 → ∃𝑥 ∈ ℕ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓𝑥𝑦)))
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem nnwos
StepHypRef Expression
1 nfrab1 3261 . . 3 𝑥{𝑥 ∈ ℕ ∣ 𝜑}
2 nfcv 2902 . . 3 𝑦{𝑥 ∈ ℕ ∣ 𝜑}
31, 2nnwof 11947 . 2 (({𝑥 ∈ ℕ ∣ 𝜑} ⊆ ℕ ∧ {𝑥 ∈ ℕ ∣ 𝜑} ≠ ∅) → ∃𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝜑}∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑}𝑥𝑦)
4 ssrab2 3828 . . . 4 {𝑥 ∈ ℕ ∣ 𝜑} ⊆ ℕ
54biantrur 528 . . 3 ({𝑥 ∈ ℕ ∣ 𝜑} ≠ ∅ ↔ ({𝑥 ∈ ℕ ∣ 𝜑} ⊆ ℕ ∧ {𝑥 ∈ ℕ ∣ 𝜑} ≠ ∅))
6 rabn0 4101 . . 3 ({𝑥 ∈ ℕ ∣ 𝜑} ≠ ∅ ↔ ∃𝑥 ∈ ℕ 𝜑)
75, 6bitr3i 266 . 2 (({𝑥 ∈ ℕ ∣ 𝜑} ⊆ ℕ ∧ {𝑥 ∈ ℕ ∣ 𝜑} ≠ ∅) ↔ ∃𝑥 ∈ ℕ 𝜑)
8 df-rex 3056 . . 3 (∃𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝜑}∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑}𝑥𝑦 ↔ ∃𝑥(𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ∧ ∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑}𝑥𝑦))
9 rabid 3254 . . . . 5 (𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ (𝑥 ∈ ℕ ∧ 𝜑))
10 df-ral 3055 . . . . . 6 (∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑}𝑥𝑦 ↔ ∀𝑦(𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} → 𝑥𝑦))
11 nnwos.1 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝜑𝜓))
1211elrab 3504 . . . . . . . . 9 (𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ (𝑦 ∈ ℕ ∧ 𝜓))
1312imbi1i 338 . . . . . . . 8 ((𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} → 𝑥𝑦) ↔ ((𝑦 ∈ ℕ ∧ 𝜓) → 𝑥𝑦))
14 impexp 461 . . . . . . . 8 (((𝑦 ∈ ℕ ∧ 𝜓) → 𝑥𝑦) ↔ (𝑦 ∈ ℕ → (𝜓𝑥𝑦)))
1513, 14bitri 264 . . . . . . 7 ((𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} → 𝑥𝑦) ↔ (𝑦 ∈ ℕ → (𝜓𝑥𝑦)))
1615albii 1896 . . . . . 6 (∀𝑦(𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} → 𝑥𝑦) ↔ ∀𝑦(𝑦 ∈ ℕ → (𝜓𝑥𝑦)))
1710, 16bitri 264 . . . . 5 (∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑}𝑥𝑦 ↔ ∀𝑦(𝑦 ∈ ℕ → (𝜓𝑥𝑦)))
189, 17anbi12i 735 . . . 4 ((𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ∧ ∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑}𝑥𝑦) ↔ ((𝑥 ∈ ℕ ∧ 𝜑) ∧ ∀𝑦(𝑦 ∈ ℕ → (𝜓𝑥𝑦))))
1918exbii 1923 . . 3 (∃𝑥(𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ∧ ∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑}𝑥𝑦) ↔ ∃𝑥((𝑥 ∈ ℕ ∧ 𝜑) ∧ ∀𝑦(𝑦 ∈ ℕ → (𝜓𝑥𝑦))))
20 df-ral 3055 . . . . . . 7 (∀𝑦 ∈ ℕ (𝜓𝑥𝑦) ↔ ∀𝑦(𝑦 ∈ ℕ → (𝜓𝑥𝑦)))
2120anbi2i 732 . . . . . 6 (((𝑥 ∈ ℕ ∧ 𝜑) ∧ ∀𝑦 ∈ ℕ (𝜓𝑥𝑦)) ↔ ((𝑥 ∈ ℕ ∧ 𝜑) ∧ ∀𝑦(𝑦 ∈ ℕ → (𝜓𝑥𝑦))))
22 anass 684 . . . . . 6 (((𝑥 ∈ ℕ ∧ 𝜑) ∧ ∀𝑦 ∈ ℕ (𝜓𝑥𝑦)) ↔ (𝑥 ∈ ℕ ∧ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓𝑥𝑦))))
2321, 22bitr3i 266 . . . . 5 (((𝑥 ∈ ℕ ∧ 𝜑) ∧ ∀𝑦(𝑦 ∈ ℕ → (𝜓𝑥𝑦))) ↔ (𝑥 ∈ ℕ ∧ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓𝑥𝑦))))
2423exbii 1923 . . . 4 (∃𝑥((𝑥 ∈ ℕ ∧ 𝜑) ∧ ∀𝑦(𝑦 ∈ ℕ → (𝜓𝑥𝑦))) ↔ ∃𝑥(𝑥 ∈ ℕ ∧ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓𝑥𝑦))))
25 df-rex 3056 . . . 4 (∃𝑥 ∈ ℕ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓𝑥𝑦)) ↔ ∃𝑥(𝑥 ∈ ℕ ∧ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓𝑥𝑦))))
2624, 25bitr4i 267 . . 3 (∃𝑥((𝑥 ∈ ℕ ∧ 𝜑) ∧ ∀𝑦(𝑦 ∈ ℕ → (𝜓𝑥𝑦))) ↔ ∃𝑥 ∈ ℕ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓𝑥𝑦)))
278, 19, 263bitri 286 . 2 (∃𝑥 ∈ {𝑥 ∈ ℕ ∣ 𝜑}∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑}𝑥𝑦 ↔ ∃𝑥 ∈ ℕ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓𝑥𝑦)))
283, 7, 273imtr3i 280 1 (∃𝑥 ∈ ℕ 𝜑 → ∃𝑥 ∈ ℕ (𝜑 ∧ ∀𝑦 ∈ ℕ (𝜓𝑥𝑦)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383  ∀wal 1630  ∃wex 1853   ∈ wcel 2139   ≠ wne 2932  ∀wral 3050  ∃wrex 3051  {crab 3054   ⊆ wss 3715  ∅c0 4058   class class class wbr 4804   ≤ cle 10267  ℕcn 11212 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-n0 11485  df-z 11570  df-uz 11880 This theorem is referenced by:  indstr  11949  infpnlem2  15817
 Copyright terms: Public domain W3C validator