![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nnunifi | Structured version Visualization version GIF version |
Description: The union (supremum) of a finite set of finite ordinals is a finite ordinal. (Contributed by Stefan O'Rear, 5-Nov-2014.) |
Ref | Expression |
---|---|
nnunifi | ⊢ ((𝑆 ⊆ ω ∧ 𝑆 ∈ Fin) → ∪ 𝑆 ∈ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unieq 4597 | . . . 4 ⊢ (𝑆 = ∅ → ∪ 𝑆 = ∪ ∅) | |
2 | uni0 4618 | . . . . 5 ⊢ ∪ ∅ = ∅ | |
3 | peano1 7252 | . . . . 5 ⊢ ∅ ∈ ω | |
4 | 2, 3 | eqeltri 2836 | . . . 4 ⊢ ∪ ∅ ∈ ω |
5 | 1, 4 | syl6eqel 2848 | . . 3 ⊢ (𝑆 = ∅ → ∪ 𝑆 ∈ ω) |
6 | 5 | adantl 473 | . 2 ⊢ (((𝑆 ⊆ ω ∧ 𝑆 ∈ Fin) ∧ 𝑆 = ∅) → ∪ 𝑆 ∈ ω) |
7 | simpll 807 | . . 3 ⊢ (((𝑆 ⊆ ω ∧ 𝑆 ∈ Fin) ∧ 𝑆 ≠ ∅) → 𝑆 ⊆ ω) | |
8 | omsson 7236 | . . . . 5 ⊢ ω ⊆ On | |
9 | 7, 8 | syl6ss 3757 | . . . 4 ⊢ (((𝑆 ⊆ ω ∧ 𝑆 ∈ Fin) ∧ 𝑆 ≠ ∅) → 𝑆 ⊆ On) |
10 | simplr 809 | . . . 4 ⊢ (((𝑆 ⊆ ω ∧ 𝑆 ∈ Fin) ∧ 𝑆 ≠ ∅) → 𝑆 ∈ Fin) | |
11 | simpr 479 | . . . 4 ⊢ (((𝑆 ⊆ ω ∧ 𝑆 ∈ Fin) ∧ 𝑆 ≠ ∅) → 𝑆 ≠ ∅) | |
12 | ordunifi 8378 | . . . 4 ⊢ ((𝑆 ⊆ On ∧ 𝑆 ∈ Fin ∧ 𝑆 ≠ ∅) → ∪ 𝑆 ∈ 𝑆) | |
13 | 9, 10, 11, 12 | syl3anc 1477 | . . 3 ⊢ (((𝑆 ⊆ ω ∧ 𝑆 ∈ Fin) ∧ 𝑆 ≠ ∅) → ∪ 𝑆 ∈ 𝑆) |
14 | 7, 13 | sseldd 3746 | . 2 ⊢ (((𝑆 ⊆ ω ∧ 𝑆 ∈ Fin) ∧ 𝑆 ≠ ∅) → ∪ 𝑆 ∈ ω) |
15 | 6, 14 | pm2.61dane 3020 | 1 ⊢ ((𝑆 ⊆ ω ∧ 𝑆 ∈ Fin) → ∪ 𝑆 ∈ ω) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2140 ≠ wne 2933 ⊆ wss 3716 ∅c0 4059 ∪ cuni 4589 Oncon0 5885 ωcom 7232 Fincfn 8124 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-ral 3056 df-rex 3057 df-rab 3060 df-v 3343 df-sbc 3578 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-pss 3732 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-tp 4327 df-op 4329 df-uni 4590 df-br 4806 df-opab 4866 df-tr 4906 df-id 5175 df-eprel 5180 df-po 5188 df-so 5189 df-fr 5226 df-we 5228 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-ord 5888 df-on 5889 df-lim 5890 df-suc 5891 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-om 7233 df-1o 7731 df-er 7914 df-en 8125 df-fin 8128 |
This theorem is referenced by: ackbij1lem16 9270 isf32lem5 9392 finxpreclem4 33561 |
Copyright terms: Public domain | W3C validator |