Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nnsum4primesoddALTV Structured version   Visualization version   GIF version

Theorem nnsum4primesoddALTV 42213
Description: If the (strong) ternary Goldbach conjecture is valid, then every odd integer greater than 7 is the sum of 3 primes. (Contributed by AV, 26-Jul-2020.)
Assertion
Ref Expression
nnsum4primesoddALTV (∀𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOdd ) → ((𝑁 ∈ (ℤ‘8) ∧ 𝑁 ∈ Odd ) → ∃𝑓 ∈ (ℙ ↑𝑚 (1...3))𝑁 = Σ𝑘 ∈ (1...3)(𝑓𝑘)))
Distinct variable group:   𝑓,𝑁,𝑘,𝑚

Proof of Theorem nnsum4primesoddALTV
Dummy variables 𝑝 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 4790 . . . . . 6 (𝑚 = 𝑁 → (7 < 𝑚 ↔ 7 < 𝑁))
2 eleq1 2838 . . . . . 6 (𝑚 = 𝑁 → (𝑚 ∈ GoldbachOdd ↔ 𝑁 ∈ GoldbachOdd ))
31, 2imbi12d 333 . . . . 5 (𝑚 = 𝑁 → ((7 < 𝑚𝑚 ∈ GoldbachOdd ) ↔ (7 < 𝑁𝑁 ∈ GoldbachOdd )))
43rspcv 3456 . . . 4 (𝑁 ∈ Odd → (∀𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOdd ) → (7 < 𝑁𝑁 ∈ GoldbachOdd )))
54adantl 467 . . 3 ((𝑁 ∈ (ℤ‘8) ∧ 𝑁 ∈ Odd ) → (∀𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOdd ) → (7 < 𝑁𝑁 ∈ GoldbachOdd )))
6 eluz2 11894 . . . . . 6 (𝑁 ∈ (ℤ‘8) ↔ (8 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 8 ≤ 𝑁))
7 7lt8 11417 . . . . . . . . 9 7 < 8
8 7re 11305 . . . . . . . . . . 11 7 ∈ ℝ
98a1i 11 . . . . . . . . . 10 (𝑁 ∈ ℤ → 7 ∈ ℝ)
10 8re 11307 . . . . . . . . . . 11 8 ∈ ℝ
1110a1i 11 . . . . . . . . . 10 (𝑁 ∈ ℤ → 8 ∈ ℝ)
12 zre 11583 . . . . . . . . . 10 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
13 ltletr 10331 . . . . . . . . . 10 ((7 ∈ ℝ ∧ 8 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((7 < 8 ∧ 8 ≤ 𝑁) → 7 < 𝑁))
149, 11, 12, 13syl3anc 1476 . . . . . . . . 9 (𝑁 ∈ ℤ → ((7 < 8 ∧ 8 ≤ 𝑁) → 7 < 𝑁))
157, 14mpani 676 . . . . . . . 8 (𝑁 ∈ ℤ → (8 ≤ 𝑁 → 7 < 𝑁))
1615imp 393 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 8 ≤ 𝑁) → 7 < 𝑁)
17163adant1 1124 . . . . . 6 ((8 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 8 ≤ 𝑁) → 7 < 𝑁)
186, 17sylbi 207 . . . . 5 (𝑁 ∈ (ℤ‘8) → 7 < 𝑁)
1918adantr 466 . . . 4 ((𝑁 ∈ (ℤ‘8) ∧ 𝑁 ∈ Odd ) → 7 < 𝑁)
20 pm2.27 42 . . . 4 (7 < 𝑁 → ((7 < 𝑁𝑁 ∈ GoldbachOdd ) → 𝑁 ∈ GoldbachOdd ))
2119, 20syl 17 . . 3 ((𝑁 ∈ (ℤ‘8) ∧ 𝑁 ∈ Odd ) → ((7 < 𝑁𝑁 ∈ GoldbachOdd ) → 𝑁 ∈ GoldbachOdd ))
22 isgbo 42169 . . . . 5 (𝑁 ∈ GoldbachOdd ↔ (𝑁 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑁 = ((𝑝 + 𝑞) + 𝑟))))
23 1ex 10237 . . . . . . . . . . . . . . . 16 1 ∈ V
24 2ex 11294 . . . . . . . . . . . . . . . 16 2 ∈ V
25 3ex 11298 . . . . . . . . . . . . . . . 16 3 ∈ V
26 vex 3354 . . . . . . . . . . . . . . . 16 𝑝 ∈ V
27 vex 3354 . . . . . . . . . . . . . . . 16 𝑞 ∈ V
28 vex 3354 . . . . . . . . . . . . . . . 16 𝑟 ∈ V
29 1ne2 11442 . . . . . . . . . . . . . . . 16 1 ≠ 2
30 1re 10241 . . . . . . . . . . . . . . . . 17 1 ∈ ℝ
31 1lt3 11398 . . . . . . . . . . . . . . . . 17 1 < 3
3230, 31ltneii 10352 . . . . . . . . . . . . . . . 16 1 ≠ 3
33 2re 11292 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ
34 2lt3 11397 . . . . . . . . . . . . . . . . 17 2 < 3
3533, 34ltneii 10352 . . . . . . . . . . . . . . . 16 2 ≠ 3
3623, 24, 25, 26, 27, 28, 29, 32, 35ftp 6567 . . . . . . . . . . . . . . 15 {⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}:{1, 2, 3}⟶{𝑝, 𝑞, 𝑟}
3736a1i 11 . . . . . . . . . . . . . 14 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → {⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}:{1, 2, 3}⟶{𝑝, 𝑞, 𝑟})
38 1p2e3 11354 . . . . . . . . . . . . . . . . . 18 (1 + 2) = 3
3938eqcomi 2780 . . . . . . . . . . . . . . . . 17 3 = (1 + 2)
4039oveq2i 6804 . . . . . . . . . . . . . . . 16 (1...3) = (1...(1 + 2))
41 1z 11609 . . . . . . . . . . . . . . . . 17 1 ∈ ℤ
42 fztp 12604 . . . . . . . . . . . . . . . . 17 (1 ∈ ℤ → (1...(1 + 2)) = {1, (1 + 1), (1 + 2)})
4341, 42ax-mp 5 . . . . . . . . . . . . . . . 16 (1...(1 + 2)) = {1, (1 + 1), (1 + 2)}
44 eqid 2771 . . . . . . . . . . . . . . . . 17 1 = 1
45 id 22 . . . . . . . . . . . . . . . . . 18 (1 = 1 → 1 = 1)
46 1p1e2 11336 . . . . . . . . . . . . . . . . . . 19 (1 + 1) = 2
4746a1i 11 . . . . . . . . . . . . . . . . . 18 (1 = 1 → (1 + 1) = 2)
4838a1i 11 . . . . . . . . . . . . . . . . . 18 (1 = 1 → (1 + 2) = 3)
4945, 47, 48tpeq123d 4419 . . . . . . . . . . . . . . . . 17 (1 = 1 → {1, (1 + 1), (1 + 2)} = {1, 2, 3})
5044, 49ax-mp 5 . . . . . . . . . . . . . . . 16 {1, (1 + 1), (1 + 2)} = {1, 2, 3}
5140, 43, 503eqtri 2797 . . . . . . . . . . . . . . 15 (1...3) = {1, 2, 3}
5251feq2i 6177 . . . . . . . . . . . . . 14 ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}:(1...3)⟶{𝑝, 𝑞, 𝑟} ↔ {⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}:{1, 2, 3}⟶{𝑝, 𝑞, 𝑟})
5337, 52sylibr 224 . . . . . . . . . . . . 13 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → {⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}:(1...3)⟶{𝑝, 𝑞, 𝑟})
54 df-3an 1073 . . . . . . . . . . . . . 14 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ∧ 𝑟 ∈ ℙ) ↔ ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ))
5526, 27, 28tpss 4501 . . . . . . . . . . . . . 14 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ∧ 𝑟 ∈ ℙ) ↔ {𝑝, 𝑞, 𝑟} ⊆ ℙ)
5654, 55sylbb1 227 . . . . . . . . . . . . 13 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → {𝑝, 𝑞, 𝑟} ⊆ ℙ)
5753, 56fssd 6197 . . . . . . . . . . . 12 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → {⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}:(1...3)⟶ℙ)
58 prmex 15598 . . . . . . . . . . . . . 14 ℙ ∈ V
59 ovex 6823 . . . . . . . . . . . . . 14 (1...3) ∈ V
6058, 59pm3.2i 447 . . . . . . . . . . . . 13 (ℙ ∈ V ∧ (1...3) ∈ V)
61 elmapg 8022 . . . . . . . . . . . . 13 ((ℙ ∈ V ∧ (1...3) ∈ V) → ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩} ∈ (ℙ ↑𝑚 (1...3)) ↔ {⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}:(1...3)⟶ℙ))
6260, 61mp1i 13 . . . . . . . . . . . 12 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩} ∈ (ℙ ↑𝑚 (1...3)) ↔ {⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}:(1...3)⟶ℙ))
6357, 62mpbird 247 . . . . . . . . . . 11 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → {⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩} ∈ (ℙ ↑𝑚 (1...3)))
64 fveq1 6331 . . . . . . . . . . . . . 14 (𝑓 = {⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩} → (𝑓𝑘) = ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘𝑘))
6564sumeq2sdv 14643 . . . . . . . . . . . . 13 (𝑓 = {⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩} → Σ𝑘 ∈ (1...3)(𝑓𝑘) = Σ𝑘 ∈ (1...3)({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘𝑘))
6665eqeq2d 2781 . . . . . . . . . . . 12 (𝑓 = {⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩} → (((𝑝 + 𝑞) + 𝑟) = Σ𝑘 ∈ (1...3)(𝑓𝑘) ↔ ((𝑝 + 𝑞) + 𝑟) = Σ𝑘 ∈ (1...3)({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘𝑘)))
6766adantl 467 . . . . . . . . . . 11 ((((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) ∧ 𝑓 = {⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}) → (((𝑝 + 𝑞) + 𝑟) = Σ𝑘 ∈ (1...3)(𝑓𝑘) ↔ ((𝑝 + 𝑞) + 𝑟) = Σ𝑘 ∈ (1...3)({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘𝑘)))
6851a1i 11 . . . . . . . . . . . . 13 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → (1...3) = {1, 2, 3})
6968sumeq1d 14639 . . . . . . . . . . . 12 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → Σ𝑘 ∈ (1...3)({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘𝑘) = Σ𝑘 ∈ {1, 2, 3} ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘𝑘))
70 fveq2 6332 . . . . . . . . . . . . . 14 (𝑘 = 1 → ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘𝑘) = ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘1))
7123, 26fvtp1 6604 . . . . . . . . . . . . . . 15 ((1 ≠ 2 ∧ 1 ≠ 3) → ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘1) = 𝑝)
7229, 32, 71mp2an 672 . . . . . . . . . . . . . 14 ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘1) = 𝑝
7370, 72syl6eq 2821 . . . . . . . . . . . . 13 (𝑘 = 1 → ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘𝑘) = 𝑝)
74 fveq2 6332 . . . . . . . . . . . . . 14 (𝑘 = 2 → ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘𝑘) = ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘2))
7524, 27fvtp2 6605 . . . . . . . . . . . . . . 15 ((1 ≠ 2 ∧ 2 ≠ 3) → ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘2) = 𝑞)
7629, 35, 75mp2an 672 . . . . . . . . . . . . . 14 ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘2) = 𝑞
7774, 76syl6eq 2821 . . . . . . . . . . . . 13 (𝑘 = 2 → ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘𝑘) = 𝑞)
78 fveq2 6332 . . . . . . . . . . . . . 14 (𝑘 = 3 → ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘𝑘) = ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘3))
7925, 28fvtp3 6606 . . . . . . . . . . . . . . 15 ((1 ≠ 3 ∧ 2 ≠ 3) → ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘3) = 𝑟)
8032, 35, 79mp2an 672 . . . . . . . . . . . . . 14 ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘3) = 𝑟
8178, 80syl6eq 2821 . . . . . . . . . . . . 13 (𝑘 = 3 → ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘𝑘) = 𝑟)
82 prmz 15596 . . . . . . . . . . . . . . . 16 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
8382zcnd 11685 . . . . . . . . . . . . . . 15 (𝑝 ∈ ℙ → 𝑝 ∈ ℂ)
84 prmz 15596 . . . . . . . . . . . . . . . 16 (𝑞 ∈ ℙ → 𝑞 ∈ ℤ)
8584zcnd 11685 . . . . . . . . . . . . . . 15 (𝑞 ∈ ℙ → 𝑞 ∈ ℂ)
86 prmz 15596 . . . . . . . . . . . . . . . 16 (𝑟 ∈ ℙ → 𝑟 ∈ ℤ)
8786zcnd 11685 . . . . . . . . . . . . . . 15 (𝑟 ∈ ℙ → 𝑟 ∈ ℂ)
8883, 85, 873anim123i 1154 . . . . . . . . . . . . . 14 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ ∧ 𝑟 ∈ ℙ) → (𝑝 ∈ ℂ ∧ 𝑞 ∈ ℂ ∧ 𝑟 ∈ ℂ))
89883expa 1111 . . . . . . . . . . . . 13 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → (𝑝 ∈ ℂ ∧ 𝑞 ∈ ℂ ∧ 𝑟 ∈ ℂ))
90 2z 11611 . . . . . . . . . . . . . . 15 2 ∈ ℤ
91 3z 11612 . . . . . . . . . . . . . . 15 3 ∈ ℤ
9241, 90, 913pm3.2i 1423 . . . . . . . . . . . . . 14 (1 ∈ ℤ ∧ 2 ∈ ℤ ∧ 3 ∈ ℤ)
9392a1i 11 . . . . . . . . . . . . 13 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → (1 ∈ ℤ ∧ 2 ∈ ℤ ∧ 3 ∈ ℤ))
9429a1i 11 . . . . . . . . . . . . 13 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → 1 ≠ 2)
9532a1i 11 . . . . . . . . . . . . 13 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → 1 ≠ 3)
9635a1i 11 . . . . . . . . . . . . 13 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → 2 ≠ 3)
9773, 77, 81, 89, 93, 94, 95, 96sumtp 14686 . . . . . . . . . . . 12 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → Σ𝑘 ∈ {1, 2, 3} ({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘𝑘) = ((𝑝 + 𝑞) + 𝑟))
9869, 97eqtr2d 2806 . . . . . . . . . . 11 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → ((𝑝 + 𝑞) + 𝑟) = Σ𝑘 ∈ (1...3)({⟨1, 𝑝⟩, ⟨2, 𝑞⟩, ⟨3, 𝑟⟩}‘𝑘))
9963, 67, 98rspcedvd 3467 . . . . . . . . . 10 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → ∃𝑓 ∈ (ℙ ↑𝑚 (1...3))((𝑝 + 𝑞) + 𝑟) = Σ𝑘 ∈ (1...3)(𝑓𝑘))
100 eqeq1 2775 . . . . . . . . . . 11 (𝑁 = ((𝑝 + 𝑞) + 𝑟) → (𝑁 = Σ𝑘 ∈ (1...3)(𝑓𝑘) ↔ ((𝑝 + 𝑞) + 𝑟) = Σ𝑘 ∈ (1...3)(𝑓𝑘)))
101100rexbidv 3200 . . . . . . . . . 10 (𝑁 = ((𝑝 + 𝑞) + 𝑟) → (∃𝑓 ∈ (ℙ ↑𝑚 (1...3))𝑁 = Σ𝑘 ∈ (1...3)(𝑓𝑘) ↔ ∃𝑓 ∈ (ℙ ↑𝑚 (1...3))((𝑝 + 𝑞) + 𝑟) = Σ𝑘 ∈ (1...3)(𝑓𝑘)))
10299, 101syl5ibrcom 237 . . . . . . . . 9 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → (𝑁 = ((𝑝 + 𝑞) + 𝑟) → ∃𝑓 ∈ (ℙ ↑𝑚 (1...3))𝑁 = Σ𝑘 ∈ (1...3)(𝑓𝑘)))
103102adantld 478 . . . . . . . 8 (((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) ∧ 𝑟 ∈ ℙ) → (((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑁 = ((𝑝 + 𝑞) + 𝑟)) → ∃𝑓 ∈ (ℙ ↑𝑚 (1...3))𝑁 = Σ𝑘 ∈ (1...3)(𝑓𝑘)))
104103rexlimdva 3179 . . . . . . 7 ((𝑝 ∈ ℙ ∧ 𝑞 ∈ ℙ) → (∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑁 = ((𝑝 + 𝑞) + 𝑟)) → ∃𝑓 ∈ (ℙ ↑𝑚 (1...3))𝑁 = Σ𝑘 ∈ (1...3)(𝑓𝑘)))
105104rexlimivv 3184 . . . . . 6 (∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑁 = ((𝑝 + 𝑞) + 𝑟)) → ∃𝑓 ∈ (ℙ ↑𝑚 (1...3))𝑁 = Σ𝑘 ∈ (1...3)(𝑓𝑘))
106105adantl 467 . . . . 5 ((𝑁 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑁 = ((𝑝 + 𝑞) + 𝑟))) → ∃𝑓 ∈ (ℙ ↑𝑚 (1...3))𝑁 = Σ𝑘 ∈ (1...3)(𝑓𝑘))
10722, 106sylbi 207 . . . 4 (𝑁 ∈ GoldbachOdd → ∃𝑓 ∈ (ℙ ↑𝑚 (1...3))𝑁 = Σ𝑘 ∈ (1...3)(𝑓𝑘))
108107a1i 11 . . 3 ((𝑁 ∈ (ℤ‘8) ∧ 𝑁 ∈ Odd ) → (𝑁 ∈ GoldbachOdd → ∃𝑓 ∈ (ℙ ↑𝑚 (1...3))𝑁 = Σ𝑘 ∈ (1...3)(𝑓𝑘)))
1095, 21, 1083syld 60 . 2 ((𝑁 ∈ (ℤ‘8) ∧ 𝑁 ∈ Odd ) → (∀𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOdd ) → ∃𝑓 ∈ (ℙ ↑𝑚 (1...3))𝑁 = Σ𝑘 ∈ (1...3)(𝑓𝑘)))
110109com12 32 1 (∀𝑚 ∈ Odd (7 < 𝑚𝑚 ∈ GoldbachOdd ) → ((𝑁 ∈ (ℤ‘8) ∧ 𝑁 ∈ Odd ) → ∃𝑓 ∈ (ℙ ↑𝑚 (1...3))𝑁 = Σ𝑘 ∈ (1...3)(𝑓𝑘)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145  wne 2943  wral 3061  wrex 3062  Vcvv 3351  wss 3723  {ctp 4320  cop 4322   class class class wbr 4786  wf 6027  cfv 6031  (class class class)co 6793  𝑚 cmap 8009  cc 10136  cr 10137  1c1 10139   + caddc 10141   < clt 10276  cle 10277  2c2 11272  3c3 11273  7c7 11277  8c8 11278  cz 11579  cuz 11888  ...cfz 12533  Σcsu 14624  cprime 15592   Odd codd 42066   GoldbachOdd cgbo 42163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-inf2 8702  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-oadd 7717  df-er 7896  df-map 8011  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-sup 8504  df-oi 8571  df-card 8965  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-4 11283  df-5 11284  df-6 11285  df-7 11286  df-8 11287  df-n0 11495  df-z 11580  df-uz 11889  df-rp 12036  df-fz 12534  df-fzo 12674  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-clim 14427  df-sum 14625  df-prm 15593  df-gbo 42166
This theorem is referenced by:  nnsum4primesevenALTV  42217
  Copyright terms: Public domain W3C validator