![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nnssre | Structured version Visualization version GIF version |
Description: The positive integers are a subset of the reals. (Contributed by NM, 10-Jan-1997.) (Revised by Mario Carneiro, 16-Jun-2013.) |
Ref | Expression |
---|---|
nnssre | ⊢ ℕ ⊆ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1re 10231 | . 2 ⊢ 1 ∈ ℝ | |
2 | peano2re 10401 | . . 3 ⊢ (𝑥 ∈ ℝ → (𝑥 + 1) ∈ ℝ) | |
3 | 2 | rgen 3060 | . 2 ⊢ ∀𝑥 ∈ ℝ (𝑥 + 1) ∈ ℝ |
4 | peano5nni 11215 | . 2 ⊢ ((1 ∈ ℝ ∧ ∀𝑥 ∈ ℝ (𝑥 + 1) ∈ ℝ) → ℕ ⊆ ℝ) | |
5 | 1, 3, 4 | mp2an 710 | 1 ⊢ ℕ ⊆ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2139 ∀wral 3050 ⊆ wss 3715 (class class class)co 6813 ℝcr 10127 1c1 10129 + caddc 10131 ℕcn 11212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-i2m1 10196 ax-1ne0 10197 ax-rrecex 10200 ax-cnre 10201 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-ov 6816 df-om 7231 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-nn 11213 |
This theorem is referenced by: nnsscn 11217 nnre 11219 dfnn3 11226 nnred 11227 nnunb 11480 nn0ssre 11488 isercolllem1 14594 isercolllem2 14595 isercoll 14597 o1fsum 14744 ruc 15171 prmgaplem3 15959 prmgaplem4 15960 gsumval3 18508 ovolctb2 23460 ovolicc2lem3 23487 ovolicc2lem4 23488 iundisj2 23517 iundisj2f 29710 ssnnssfz 29858 iundisjfi 29864 iundisj2fi 29865 xrsmulgzz 29987 ballotlemsup 30875 reprlt 31006 reprgt 31008 erdszelem5 31484 erdszelem7 31486 erdszelem8 31487 incsequz2 33858 stoweidlem34 40754 fourierdlem31 40858 prmdvdsfmtnof1lem1 42006 prmdvdsfmtnof 42008 |
Copyright terms: Public domain | W3C validator |