![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nnssnn0 | Structured version Visualization version GIF version |
Description: Positive naturals are a subset of nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002.) |
Ref | Expression |
---|---|
nnssnn0 | ⊢ ℕ ⊆ ℕ0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun1 3809 | . 2 ⊢ ℕ ⊆ (ℕ ∪ {0}) | |
2 | df-n0 11331 | . 2 ⊢ ℕ0 = (ℕ ∪ {0}) | |
3 | 1, 2 | sseqtr4i 3671 | 1 ⊢ ℕ ⊆ ℕ0 |
Colors of variables: wff setvar class |
Syntax hints: ∪ cun 3605 ⊆ wss 3607 {csn 4210 0cc0 9974 ℕcn 11058 ℕ0cn0 11330 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-v 3233 df-un 3612 df-in 3614 df-ss 3621 df-n0 11331 |
This theorem is referenced by: nnnn0 11337 nnnn0d 11389 nthruz 15026 oddge22np1 15120 bitsfzolem 15203 lcmfval 15381 ramub1 15779 ramcl 15780 ply1divex 23941 pserdvlem2 24227 fsum2dsub 30813 breprexplemc 30838 breprexpnat 30840 knoppndvlem18 32645 hbtlem5 38015 brfvtrcld 38330 corcltrcl 38348 fourierdlem50 40691 fourierdlem102 40743 fourierdlem114 40755 fmtnoinf 41773 fmtnofac2 41806 |
Copyright terms: Public domain | W3C validator |