Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nnsgrp Structured version   Visualization version   GIF version

Theorem nnsgrp 42342
Description: The structure of positive integers together with the addition of complex numbers is a semigroup. (Contributed by AV, 4-Feb-2020.)
Hypothesis
Ref Expression
nnsgrp.m 𝑀 = (ℂflds ℕ)
Assertion
Ref Expression
nnsgrp 𝑀 ∈ SGrp

Proof of Theorem nnsgrp
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnsgrp.m . . 3 𝑀 = (ℂflds ℕ)
21nnsgrpmgm 42341 . 2 𝑀 ∈ Mgm
3 nncn 11234 . . . . . 6 (𝑥 ∈ ℕ → 𝑥 ∈ ℂ)
4 nncn 11234 . . . . . 6 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
5 nncn 11234 . . . . . 6 (𝑧 ∈ ℕ → 𝑧 ∈ ℂ)
6 addass 10229 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
73, 4, 5, 6syl3an 1163 . . . . 5 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
873expia 1114 . . . 4 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (𝑧 ∈ ℕ → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))))
98ralrimiv 3114 . . 3 ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ) → ∀𝑧 ∈ ℕ ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
109rgen2a 3126 . 2 𝑥 ∈ ℕ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))
11 nnsscn 11231 . . . 4 ℕ ⊆ ℂ
121cnfldsrngbas 42294 . . . 4 (ℕ ⊆ ℂ → ℕ = (Base‘𝑀))
1311, 12ax-mp 5 . . 3 ℕ = (Base‘𝑀)
14 nnex 11232 . . . 4 ℕ ∈ V
151cnfldsrngadd 42295 . . . 4 (ℕ ∈ V → + = (+g𝑀))
1614, 15ax-mp 5 . . 3 + = (+g𝑀)
1713, 16issgrp 17493 . 2 (𝑀 ∈ SGrp ↔ (𝑀 ∈ Mgm ∧ ∀𝑥 ∈ ℕ ∀𝑦 ∈ ℕ ∀𝑧 ∈ ℕ ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))))
182, 10, 17mpbir2an 690 1 𝑀 ∈ SGrp
Colors of variables: wff setvar class
Syntax hints:  wa 382   = wceq 1631  wcel 2145  wral 3061  Vcvv 3351  wss 3723  cfv 6030  (class class class)co 6796  cc 10140   + caddc 10145  cn 11226  Basecbs 16064  s cress 16065  +gcplusg 16149  Mgmcmgm 17448  SGrpcsgrp 17491  fldccnfld 19961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219  ax-addf 10221
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-om 7217  df-1st 7319  df-2nd 7320  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-1o 7717  df-oadd 7721  df-er 7900  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-nn 11227  df-2 11285  df-3 11286  df-4 11287  df-5 11288  df-6 11289  df-7 11290  df-8 11291  df-9 11292  df-n0 11500  df-z 11585  df-dec 11701  df-uz 11894  df-fz 12534  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-starv 16164  df-tset 16168  df-ple 16169  df-ds 16172  df-unif 16173  df-mgm 17450  df-sgrp 17492  df-cnfld 19962
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator