MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnneo Structured version   Visualization version   GIF version

Theorem nnneo 7883
Description: If a natural number is even, its successor is odd. (Contributed by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
nnneo ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 = (2𝑜 ·𝑜 𝐴)) → ¬ suc 𝐶 = (2𝑜 ·𝑜 𝐵))

Proof of Theorem nnneo
StepHypRef Expression
1 nnon 7216 . . . 4 (𝐴 ∈ ω → 𝐴 ∈ On)
2 onnbtwn 5960 . . . 4 (𝐴 ∈ On → ¬ (𝐴𝐵𝐵 ∈ suc 𝐴))
31, 2syl 17 . . 3 (𝐴 ∈ ω → ¬ (𝐴𝐵𝐵 ∈ suc 𝐴))
433ad2ant1 1125 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 = (2𝑜 ·𝑜 𝐴)) → ¬ (𝐴𝐵𝐵 ∈ suc 𝐴))
5 suceq 5932 . . . . 5 (𝐶 = (2𝑜 ·𝑜 𝐴) → suc 𝐶 = suc (2𝑜 ·𝑜 𝐴))
65eqeq1d 2771 . . . 4 (𝐶 = (2𝑜 ·𝑜 𝐴) → (suc 𝐶 = (2𝑜 ·𝑜 𝐵) ↔ suc (2𝑜 ·𝑜 𝐴) = (2𝑜 ·𝑜 𝐵)))
763ad2ant3 1127 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 = (2𝑜 ·𝑜 𝐴)) → (suc 𝐶 = (2𝑜 ·𝑜 𝐵) ↔ suc (2𝑜 ·𝑜 𝐴) = (2𝑜 ·𝑜 𝐵)))
8 ovex 6821 . . . . . . . 8 (2𝑜 ·𝑜 𝐴) ∈ V
98sucid 5946 . . . . . . 7 (2𝑜 ·𝑜 𝐴) ∈ suc (2𝑜 ·𝑜 𝐴)
10 eleq2 2837 . . . . . . 7 (suc (2𝑜 ·𝑜 𝐴) = (2𝑜 ·𝑜 𝐵) → ((2𝑜 ·𝑜 𝐴) ∈ suc (2𝑜 ·𝑜 𝐴) ↔ (2𝑜 ·𝑜 𝐴) ∈ (2𝑜 ·𝑜 𝐵)))
119, 10mpbii 223 . . . . . 6 (suc (2𝑜 ·𝑜 𝐴) = (2𝑜 ·𝑜 𝐵) → (2𝑜 ·𝑜 𝐴) ∈ (2𝑜 ·𝑜 𝐵))
12 2onn 7872 . . . . . . . 8 2𝑜 ∈ ω
13 nnmord 7864 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 2𝑜 ∈ ω) → ((𝐴𝐵 ∧ ∅ ∈ 2𝑜) ↔ (2𝑜 ·𝑜 𝐴) ∈ (2𝑜 ·𝑜 𝐵)))
1412, 13mp3an3 1559 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴𝐵 ∧ ∅ ∈ 2𝑜) ↔ (2𝑜 ·𝑜 𝐴) ∈ (2𝑜 ·𝑜 𝐵)))
15 simpl 475 . . . . . . 7 ((𝐴𝐵 ∧ ∅ ∈ 2𝑜) → 𝐴𝐵)
1614, 15syl6bir 244 . . . . . 6 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((2𝑜 ·𝑜 𝐴) ∈ (2𝑜 ·𝑜 𝐵) → 𝐴𝐵))
1711, 16syl5 34 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc (2𝑜 ·𝑜 𝐴) = (2𝑜 ·𝑜 𝐵) → 𝐴𝐵))
18 simpr 480 . . . . . . . . 9 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc (2𝑜 ·𝑜 𝐴) = (2𝑜 ·𝑜 𝐵)) → suc (2𝑜 ·𝑜 𝐴) = (2𝑜 ·𝑜 𝐵))
19 nnmcl 7844 . . . . . . . . . . . . 13 ((2𝑜 ∈ ω ∧ 𝐴 ∈ ω) → (2𝑜 ·𝑜 𝐴) ∈ ω)
2012, 19mpan 705 . . . . . . . . . . . 12 (𝐴 ∈ ω → (2𝑜 ·𝑜 𝐴) ∈ ω)
21 nnon 7216 . . . . . . . . . . . 12 ((2𝑜 ·𝑜 𝐴) ∈ ω → (2𝑜 ·𝑜 𝐴) ∈ On)
22 oa1suc 7763 . . . . . . . . . . . 12 ((2𝑜 ·𝑜 𝐴) ∈ On → ((2𝑜 ·𝑜 𝐴) +𝑜 1𝑜) = suc (2𝑜 ·𝑜 𝐴))
2320, 21, 223syl 18 . . . . . . . . . . 11 (𝐴 ∈ ω → ((2𝑜 ·𝑜 𝐴) +𝑜 1𝑜) = suc (2𝑜 ·𝑜 𝐴))
24 1onn 7871 . . . . . . . . . . . . . . . 16 1𝑜 ∈ ω
2524elexi 3361 . . . . . . . . . . . . . . 15 1𝑜 ∈ V
2625sucid 5946 . . . . . . . . . . . . . 14 1𝑜 ∈ suc 1𝑜
27 df-2o 7712 . . . . . . . . . . . . . 14 2𝑜 = suc 1𝑜
2826, 27eleqtrri 2847 . . . . . . . . . . . . 13 1𝑜 ∈ 2𝑜
29 nnaord 7851 . . . . . . . . . . . . . . 15 ((1𝑜 ∈ ω ∧ 2𝑜 ∈ ω ∧ (2𝑜 ·𝑜 𝐴) ∈ ω) → (1𝑜 ∈ 2𝑜 ↔ ((2𝑜 ·𝑜 𝐴) +𝑜 1𝑜) ∈ ((2𝑜 ·𝑜 𝐴) +𝑜 2𝑜)))
3024, 12, 29mp3an12 1560 . . . . . . . . . . . . . 14 ((2𝑜 ·𝑜 𝐴) ∈ ω → (1𝑜 ∈ 2𝑜 ↔ ((2𝑜 ·𝑜 𝐴) +𝑜 1𝑜) ∈ ((2𝑜 ·𝑜 𝐴) +𝑜 2𝑜)))
3120, 30syl 17 . . . . . . . . . . . . 13 (𝐴 ∈ ω → (1𝑜 ∈ 2𝑜 ↔ ((2𝑜 ·𝑜 𝐴) +𝑜 1𝑜) ∈ ((2𝑜 ·𝑜 𝐴) +𝑜 2𝑜)))
3228, 31mpbii 223 . . . . . . . . . . . 12 (𝐴 ∈ ω → ((2𝑜 ·𝑜 𝐴) +𝑜 1𝑜) ∈ ((2𝑜 ·𝑜 𝐴) +𝑜 2𝑜))
33 nnmsuc 7839 . . . . . . . . . . . . 13 ((2𝑜 ∈ ω ∧ 𝐴 ∈ ω) → (2𝑜 ·𝑜 suc 𝐴) = ((2𝑜 ·𝑜 𝐴) +𝑜 2𝑜))
3412, 33mpan 705 . . . . . . . . . . . 12 (𝐴 ∈ ω → (2𝑜 ·𝑜 suc 𝐴) = ((2𝑜 ·𝑜 𝐴) +𝑜 2𝑜))
3532, 34eleqtrrd 2851 . . . . . . . . . . 11 (𝐴 ∈ ω → ((2𝑜 ·𝑜 𝐴) +𝑜 1𝑜) ∈ (2𝑜 ·𝑜 suc 𝐴))
3623, 35eqeltrrd 2849 . . . . . . . . . 10 (𝐴 ∈ ω → suc (2𝑜 ·𝑜 𝐴) ∈ (2𝑜 ·𝑜 suc 𝐴))
3736ad2antrr 761 . . . . . . . . 9 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc (2𝑜 ·𝑜 𝐴) = (2𝑜 ·𝑜 𝐵)) → suc (2𝑜 ·𝑜 𝐴) ∈ (2𝑜 ·𝑜 suc 𝐴))
3818, 37eqeltrrd 2849 . . . . . . . 8 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc (2𝑜 ·𝑜 𝐴) = (2𝑜 ·𝑜 𝐵)) → (2𝑜 ·𝑜 𝐵) ∈ (2𝑜 ·𝑜 suc 𝐴))
39 peano2 7231 . . . . . . . . . . 11 (𝐴 ∈ ω → suc 𝐴 ∈ ω)
40 nnmord 7864 . . . . . . . . . . . 12 ((𝐵 ∈ ω ∧ suc 𝐴 ∈ ω ∧ 2𝑜 ∈ ω) → ((𝐵 ∈ suc 𝐴 ∧ ∅ ∈ 2𝑜) ↔ (2𝑜 ·𝑜 𝐵) ∈ (2𝑜 ·𝑜 suc 𝐴)))
4112, 40mp3an3 1559 . . . . . . . . . . 11 ((𝐵 ∈ ω ∧ suc 𝐴 ∈ ω) → ((𝐵 ∈ suc 𝐴 ∧ ∅ ∈ 2𝑜) ↔ (2𝑜 ·𝑜 𝐵) ∈ (2𝑜 ·𝑜 suc 𝐴)))
4239, 41sylan2 493 . . . . . . . . . 10 ((𝐵 ∈ ω ∧ 𝐴 ∈ ω) → ((𝐵 ∈ suc 𝐴 ∧ ∅ ∈ 2𝑜) ↔ (2𝑜 ·𝑜 𝐵) ∈ (2𝑜 ·𝑜 suc 𝐴)))
4342ancoms 469 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐵 ∈ suc 𝐴 ∧ ∅ ∈ 2𝑜) ↔ (2𝑜 ·𝑜 𝐵) ∈ (2𝑜 ·𝑜 suc 𝐴)))
4443adantr 473 . . . . . . . 8 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc (2𝑜 ·𝑜 𝐴) = (2𝑜 ·𝑜 𝐵)) → ((𝐵 ∈ suc 𝐴 ∧ ∅ ∈ 2𝑜) ↔ (2𝑜 ·𝑜 𝐵) ∈ (2𝑜 ·𝑜 suc 𝐴)))
4538, 44mpbird 247 . . . . . . 7 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc (2𝑜 ·𝑜 𝐴) = (2𝑜 ·𝑜 𝐵)) → (𝐵 ∈ suc 𝐴 ∧ ∅ ∈ 2𝑜))
4645simpld 478 . . . . . 6 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ suc (2𝑜 ·𝑜 𝐴) = (2𝑜 ·𝑜 𝐵)) → 𝐵 ∈ suc 𝐴)
4746ex 448 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc (2𝑜 ·𝑜 𝐴) = (2𝑜 ·𝑜 𝐵) → 𝐵 ∈ suc 𝐴))
4817, 47jcad 557 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc (2𝑜 ·𝑜 𝐴) = (2𝑜 ·𝑜 𝐵) → (𝐴𝐵𝐵 ∈ suc 𝐴)))
49483adant3 1124 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 = (2𝑜 ·𝑜 𝐴)) → (suc (2𝑜 ·𝑜 𝐴) = (2𝑜 ·𝑜 𝐵) → (𝐴𝐵𝐵 ∈ suc 𝐴)))
507, 49sylbid 230 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 = (2𝑜 ·𝑜 𝐴)) → (suc 𝐶 = (2𝑜 ·𝑜 𝐵) → (𝐴𝐵𝐵 ∈ suc 𝐴)))
514, 50mtod 189 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 = (2𝑜 ·𝑜 𝐴)) → ¬ suc 𝐶 = (2𝑜 ·𝑜 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1069   = wceq 1629  wcel 2143  c0 4060  Oncon0 5865  suc csuc 5867  (class class class)co 6791  ωcom 7210  1𝑜c1o 7704  2𝑜c2o 7705   +𝑜 coa 7708   ·𝑜 comu 7709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1868  ax-4 1883  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2145  ax-9 2152  ax-10 2172  ax-11 2188  ax-12 2201  ax-13 2406  ax-ext 2749  ax-sep 4911  ax-nul 4919  ax-pow 4970  ax-pr 5033  ax-un 7094
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1070  df-3an 1071  df-tru 1632  df-ex 1851  df-nf 1856  df-sb 2048  df-eu 2620  df-mo 2621  df-clab 2756  df-cleq 2762  df-clel 2765  df-nfc 2900  df-ne 2942  df-ral 3064  df-rex 3065  df-reu 3066  df-rab 3068  df-v 3350  df-sbc 3585  df-csb 3680  df-dif 3723  df-un 3725  df-in 3727  df-ss 3734  df-pss 3736  df-nul 4061  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4572  df-iun 4653  df-br 4784  df-opab 4844  df-mpt 4861  df-tr 4884  df-id 5156  df-eprel 5161  df-po 5169  df-so 5170  df-fr 5207  df-we 5209  df-xp 5254  df-rel 5255  df-cnv 5256  df-co 5257  df-dm 5258  df-rn 5259  df-res 5260  df-ima 5261  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-ov 6794  df-oprab 6795  df-mpt2 6796  df-om 7211  df-1st 7313  df-2nd 7314  df-wrecs 7557  df-recs 7619  df-rdg 7657  df-1o 7711  df-2o 7712  df-oadd 7715  df-omul 7716
This theorem is referenced by:  nneob  7884
  Copyright terms: Public domain W3C validator