![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nnn0 | Structured version Visualization version GIF version |
Description: The set of positive integers is nonempty. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
Ref | Expression |
---|---|
nnn0 | ⊢ ℕ ≠ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nn 11244 | . 2 ⊢ 1 ∈ ℕ | |
2 | 1 | ne0ii 4067 | 1 ⊢ ℕ ≠ ∅ |
Colors of variables: wff setvar class |
Syntax hints: ≠ wne 2933 ∅c0 4059 1c1 10150 ℕcn 11233 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 ax-1cn 10207 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-ral 3056 df-rex 3057 df-reu 3058 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-pss 3732 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-tp 4327 df-op 4329 df-uni 4590 df-iun 4675 df-br 4806 df-opab 4866 df-mpt 4883 df-tr 4906 df-id 5175 df-eprel 5180 df-po 5188 df-so 5189 df-fr 5226 df-we 5228 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-pred 5842 df-ord 5888 df-on 5889 df-lim 5890 df-suc 5891 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-om 7233 df-wrecs 7578 df-recs 7639 df-rdg 7677 df-nn 11234 |
This theorem is referenced by: iocborel 41096 iunhoiioo 41415 iccvonmbllem 41417 preimageiingt 41455 preimaleiinlt 41456 salpreimagtge 41459 salpreimaltle 41460 smflimlem1 41504 |
Copyright terms: Public domain | W3C validator |