MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnmwordi Structured version   Visualization version   GIF version

Theorem nnmwordi 7869
Description: Weak ordering property of multiplication. (Contributed by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
nnmwordi ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴𝐵 → (𝐶 ·𝑜 𝐴) ⊆ (𝐶 ·𝑜 𝐵)))

Proof of Theorem nnmwordi
StepHypRef Expression
1 nnmword 7867 . . . 4 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐴𝐵 ↔ (𝐶 ·𝑜 𝐴) ⊆ (𝐶 ·𝑜 𝐵)))
21biimpd 219 . . 3 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐴𝐵 → (𝐶 ·𝑜 𝐴) ⊆ (𝐶 ·𝑜 𝐵)))
32ex 397 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (∅ ∈ 𝐶 → (𝐴𝐵 → (𝐶 ·𝑜 𝐴) ⊆ (𝐶 ·𝑜 𝐵))))
4 nnord 7220 . . . . . 6 (𝐶 ∈ ω → Ord 𝐶)
5 ord0eln0 5922 . . . . . . 7 (Ord 𝐶 → (∅ ∈ 𝐶𝐶 ≠ ∅))
65necon2bbid 2986 . . . . . 6 (Ord 𝐶 → (𝐶 = ∅ ↔ ¬ ∅ ∈ 𝐶))
74, 6syl 17 . . . . 5 (𝐶 ∈ ω → (𝐶 = ∅ ↔ ¬ ∅ ∈ 𝐶))
873ad2ant3 1129 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐶 = ∅ ↔ ¬ ∅ ∈ 𝐶))
9 ssid 3773 . . . . . . 7 ∅ ⊆ ∅
10 nnm0r 7844 . . . . . . . . 9 (𝐴 ∈ ω → (∅ ·𝑜 𝐴) = ∅)
1110adantr 466 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (∅ ·𝑜 𝐴) = ∅)
12 nnm0r 7844 . . . . . . . . 9 (𝐵 ∈ ω → (∅ ·𝑜 𝐵) = ∅)
1312adantl 467 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (∅ ·𝑜 𝐵) = ∅)
1411, 13sseq12d 3783 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((∅ ·𝑜 𝐴) ⊆ (∅ ·𝑜 𝐵) ↔ ∅ ⊆ ∅))
159, 14mpbiri 248 . . . . . 6 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (∅ ·𝑜 𝐴) ⊆ (∅ ·𝑜 𝐵))
16 oveq1 6800 . . . . . . 7 (𝐶 = ∅ → (𝐶 ·𝑜 𝐴) = (∅ ·𝑜 𝐴))
17 oveq1 6800 . . . . . . 7 (𝐶 = ∅ → (𝐶 ·𝑜 𝐵) = (∅ ·𝑜 𝐵))
1816, 17sseq12d 3783 . . . . . 6 (𝐶 = ∅ → ((𝐶 ·𝑜 𝐴) ⊆ (𝐶 ·𝑜 𝐵) ↔ (∅ ·𝑜 𝐴) ⊆ (∅ ·𝑜 𝐵)))
1915, 18syl5ibrcom 237 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐶 = ∅ → (𝐶 ·𝑜 𝐴) ⊆ (𝐶 ·𝑜 𝐵)))
20193adant3 1126 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐶 = ∅ → (𝐶 ·𝑜 𝐴) ⊆ (𝐶 ·𝑜 𝐵)))
218, 20sylbird 250 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (¬ ∅ ∈ 𝐶 → (𝐶 ·𝑜 𝐴) ⊆ (𝐶 ·𝑜 𝐵)))
2221a1dd 50 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (¬ ∅ ∈ 𝐶 → (𝐴𝐵 → (𝐶 ·𝑜 𝐴) ⊆ (𝐶 ·𝑜 𝐵))))
233, 22pm2.61d 171 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴𝐵 → (𝐶 ·𝑜 𝐴) ⊆ (𝐶 ·𝑜 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145  wss 3723  c0 4063  Ord word 5865  (class class class)co 6793  ωcom 7212   ·𝑜 comu 7711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-oadd 7717  df-omul 7718
This theorem is referenced by:  nnmwordri  7870  omopthlem1  7889
  Copyright terms: Public domain W3C validator