![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nnmulcld | Structured version Visualization version GIF version |
Description: Closure of multiplication of positive integers. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
nnge1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℕ) |
nnmulcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℕ) |
Ref | Expression |
---|---|
nnmulcld | ⊢ (𝜑 → (𝐴 · 𝐵) ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnge1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℕ) | |
2 | nnmulcld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℕ) | |
3 | nnmulcl 11235 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 · 𝐵) ∈ ℕ) | |
4 | 1, 2, 3 | syl2anc 696 | 1 ⊢ (𝜑 → (𝐴 · 𝐵) ∈ ℕ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2139 (class class class)co 6813 · cmul 10133 ℕcn 11212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rrecex 10200 ax-cnre 10201 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-ov 6816 df-om 7231 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-nn 11213 |
This theorem is referenced by: bcm1k 13296 bcp1n 13297 permnn 13307 trireciplem 14793 efaddlem 15022 eftlub 15038 eirrlem 15131 modmulconst 15215 isprm5 15621 crth 15685 phimullem 15686 pcqmul 15760 pcaddlem 15794 pcbc 15806 oddprmdvds 15809 pockthlem 15811 pockthg 15812 vdwlem3 15889 vdwlem6 15892 vdwlem9 15895 torsubg 18457 ablfacrp 18665 dgrcolem1 24228 aalioulem5 24290 aaliou3lem2 24297 log2cnv 24870 log2tlbnd 24871 log2ublem2 24873 log2ub 24875 lgamgulmlem4 24957 wilthlem2 24994 ftalem7 25004 basellem5 25010 mumul 25106 fsumfldivdiaglem 25114 dvdsmulf1o 25119 sgmmul 25125 chtublem 25135 bcmono 25201 bposlem3 25210 bposlem5 25212 gausslemma2dlem1a 25289 lgsquadlem2 25305 lgsquadlem3 25306 lgsquad2lem2 25309 2sqlem6 25347 rplogsumlem1 25372 rplogsumlem2 25373 dchrisum0fmul 25394 vmalogdivsum2 25426 pntrsumbnd2 25455 pntpbnd1 25474 pntpbnd2 25475 ostth2lem2 25522 2sqmod 29957 oddpwdc 30725 eulerpartlemgh 30749 subfaclim 31477 bcprod 31931 faclim2 31941 jm2.27c 38076 relexpmulnn 38503 mccllem 40332 limsup10exlem 40507 wallispilem5 40789 wallispi2lem1 40791 wallispi2 40793 stirlinglem3 40796 stirlinglem8 40801 stirlinglem15 40808 dirkertrigeqlem3 40820 hoicvrrex 41276 deccarry 41831 fmtnoprmfac2 41989 sfprmdvdsmersenne 42030 lighneallem3 42034 proththdlem 42040 blennnt2 42893 |
Copyright terms: Public domain | W3C validator |