MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnmsucr Structured version   Visualization version   GIF version

Theorem nnmsucr 7690
Description: Multiplication with successor. Exercise 16 of [Enderton] p. 82. (Contributed by NM, 21-Sep-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
nnmsucr ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴 ·𝑜 𝐵) = ((𝐴 ·𝑜 𝐵) +𝑜 𝐵))

Proof of Theorem nnmsucr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6643 . . . . 5 (𝑥 = 𝐵 → (suc 𝐴 ·𝑜 𝑥) = (suc 𝐴 ·𝑜 𝐵))
2 oveq2 6643 . . . . . 6 (𝑥 = 𝐵 → (𝐴 ·𝑜 𝑥) = (𝐴 ·𝑜 𝐵))
3 id 22 . . . . . 6 (𝑥 = 𝐵𝑥 = 𝐵)
42, 3oveq12d 6653 . . . . 5 (𝑥 = 𝐵 → ((𝐴 ·𝑜 𝑥) +𝑜 𝑥) = ((𝐴 ·𝑜 𝐵) +𝑜 𝐵))
51, 4eqeq12d 2635 . . . 4 (𝑥 = 𝐵 → ((suc 𝐴 ·𝑜 𝑥) = ((𝐴 ·𝑜 𝑥) +𝑜 𝑥) ↔ (suc 𝐴 ·𝑜 𝐵) = ((𝐴 ·𝑜 𝐵) +𝑜 𝐵)))
65imbi2d 330 . . 3 (𝑥 = 𝐵 → ((𝐴 ∈ ω → (suc 𝐴 ·𝑜 𝑥) = ((𝐴 ·𝑜 𝑥) +𝑜 𝑥)) ↔ (𝐴 ∈ ω → (suc 𝐴 ·𝑜 𝐵) = ((𝐴 ·𝑜 𝐵) +𝑜 𝐵))))
7 oveq2 6643 . . . . 5 (𝑥 = ∅ → (suc 𝐴 ·𝑜 𝑥) = (suc 𝐴 ·𝑜 ∅))
8 oveq2 6643 . . . . . 6 (𝑥 = ∅ → (𝐴 ·𝑜 𝑥) = (𝐴 ·𝑜 ∅))
9 id 22 . . . . . 6 (𝑥 = ∅ → 𝑥 = ∅)
108, 9oveq12d 6653 . . . . 5 (𝑥 = ∅ → ((𝐴 ·𝑜 𝑥) +𝑜 𝑥) = ((𝐴 ·𝑜 ∅) +𝑜 ∅))
117, 10eqeq12d 2635 . . . 4 (𝑥 = ∅ → ((suc 𝐴 ·𝑜 𝑥) = ((𝐴 ·𝑜 𝑥) +𝑜 𝑥) ↔ (suc 𝐴 ·𝑜 ∅) = ((𝐴 ·𝑜 ∅) +𝑜 ∅)))
12 oveq2 6643 . . . . 5 (𝑥 = 𝑦 → (suc 𝐴 ·𝑜 𝑥) = (suc 𝐴 ·𝑜 𝑦))
13 oveq2 6643 . . . . . 6 (𝑥 = 𝑦 → (𝐴 ·𝑜 𝑥) = (𝐴 ·𝑜 𝑦))
14 id 22 . . . . . 6 (𝑥 = 𝑦𝑥 = 𝑦)
1513, 14oveq12d 6653 . . . . 5 (𝑥 = 𝑦 → ((𝐴 ·𝑜 𝑥) +𝑜 𝑥) = ((𝐴 ·𝑜 𝑦) +𝑜 𝑦))
1612, 15eqeq12d 2635 . . . 4 (𝑥 = 𝑦 → ((suc 𝐴 ·𝑜 𝑥) = ((𝐴 ·𝑜 𝑥) +𝑜 𝑥) ↔ (suc 𝐴 ·𝑜 𝑦) = ((𝐴 ·𝑜 𝑦) +𝑜 𝑦)))
17 oveq2 6643 . . . . 5 (𝑥 = suc 𝑦 → (suc 𝐴 ·𝑜 𝑥) = (suc 𝐴 ·𝑜 suc 𝑦))
18 oveq2 6643 . . . . . 6 (𝑥 = suc 𝑦 → (𝐴 ·𝑜 𝑥) = (𝐴 ·𝑜 suc 𝑦))
19 id 22 . . . . . 6 (𝑥 = suc 𝑦𝑥 = suc 𝑦)
2018, 19oveq12d 6653 . . . . 5 (𝑥 = suc 𝑦 → ((𝐴 ·𝑜 𝑥) +𝑜 𝑥) = ((𝐴 ·𝑜 suc 𝑦) +𝑜 suc 𝑦))
2117, 20eqeq12d 2635 . . . 4 (𝑥 = suc 𝑦 → ((suc 𝐴 ·𝑜 𝑥) = ((𝐴 ·𝑜 𝑥) +𝑜 𝑥) ↔ (suc 𝐴 ·𝑜 suc 𝑦) = ((𝐴 ·𝑜 suc 𝑦) +𝑜 suc 𝑦)))
22 peano2 7071 . . . . . . 7 (𝐴 ∈ ω → suc 𝐴 ∈ ω)
23 nnm0 7670 . . . . . . 7 (suc 𝐴 ∈ ω → (suc 𝐴 ·𝑜 ∅) = ∅)
2422, 23syl 17 . . . . . 6 (𝐴 ∈ ω → (suc 𝐴 ·𝑜 ∅) = ∅)
25 nnm0 7670 . . . . . 6 (𝐴 ∈ ω → (𝐴 ·𝑜 ∅) = ∅)
2624, 25eqtr4d 2657 . . . . 5 (𝐴 ∈ ω → (suc 𝐴 ·𝑜 ∅) = (𝐴 ·𝑜 ∅))
27 peano1 7070 . . . . . . 7 ∅ ∈ ω
28 nnmcl 7677 . . . . . . 7 ((𝐴 ∈ ω ∧ ∅ ∈ ω) → (𝐴 ·𝑜 ∅) ∈ ω)
2927, 28mpan2 706 . . . . . 6 (𝐴 ∈ ω → (𝐴 ·𝑜 ∅) ∈ ω)
30 nna0 7669 . . . . . 6 ((𝐴 ·𝑜 ∅) ∈ ω → ((𝐴 ·𝑜 ∅) +𝑜 ∅) = (𝐴 ·𝑜 ∅))
3129, 30syl 17 . . . . 5 (𝐴 ∈ ω → ((𝐴 ·𝑜 ∅) +𝑜 ∅) = (𝐴 ·𝑜 ∅))
3226, 31eqtr4d 2657 . . . 4 (𝐴 ∈ ω → (suc 𝐴 ·𝑜 ∅) = ((𝐴 ·𝑜 ∅) +𝑜 ∅))
33 oveq1 6642 . . . . . 6 ((suc 𝐴 ·𝑜 𝑦) = ((𝐴 ·𝑜 𝑦) +𝑜 𝑦) → ((suc 𝐴 ·𝑜 𝑦) +𝑜 suc 𝐴) = (((𝐴 ·𝑜 𝑦) +𝑜 𝑦) +𝑜 suc 𝐴))
34 peano2b 7066 . . . . . . . 8 (𝐴 ∈ ω ↔ suc 𝐴 ∈ ω)
35 nnmsuc 7672 . . . . . . . 8 ((suc 𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (suc 𝐴 ·𝑜 suc 𝑦) = ((suc 𝐴 ·𝑜 𝑦) +𝑜 suc 𝐴))
3634, 35sylanb 489 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (suc 𝐴 ·𝑜 suc 𝑦) = ((suc 𝐴 ·𝑜 𝑦) +𝑜 suc 𝐴))
37 nnmcl 7677 . . . . . . . . . . 11 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 ·𝑜 𝑦) ∈ ω)
38 peano2b 7066 . . . . . . . . . . . 12 (𝑦 ∈ ω ↔ suc 𝑦 ∈ ω)
39 nnaass 7687 . . . . . . . . . . . 12 (((𝐴 ·𝑜 𝑦) ∈ ω ∧ 𝐴 ∈ ω ∧ suc 𝑦 ∈ ω) → (((𝐴 ·𝑜 𝑦) +𝑜 𝐴) +𝑜 suc 𝑦) = ((𝐴 ·𝑜 𝑦) +𝑜 (𝐴 +𝑜 suc 𝑦)))
4038, 39syl3an3b 1362 . . . . . . . . . . 11 (((𝐴 ·𝑜 𝑦) ∈ ω ∧ 𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (((𝐴 ·𝑜 𝑦) +𝑜 𝐴) +𝑜 suc 𝑦) = ((𝐴 ·𝑜 𝑦) +𝑜 (𝐴 +𝑜 suc 𝑦)))
4137, 40syl3an1 1357 . . . . . . . . . 10 (((𝐴 ∈ ω ∧ 𝑦 ∈ ω) ∧ 𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (((𝐴 ·𝑜 𝑦) +𝑜 𝐴) +𝑜 suc 𝑦) = ((𝐴 ·𝑜 𝑦) +𝑜 (𝐴 +𝑜 suc 𝑦)))
42413expb 1264 . . . . . . . . 9 (((𝐴 ∈ ω ∧ 𝑦 ∈ ω) ∧ (𝐴 ∈ ω ∧ 𝑦 ∈ ω)) → (((𝐴 ·𝑜 𝑦) +𝑜 𝐴) +𝑜 suc 𝑦) = ((𝐴 ·𝑜 𝑦) +𝑜 (𝐴 +𝑜 suc 𝑦)))
4342anidms 676 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (((𝐴 ·𝑜 𝑦) +𝑜 𝐴) +𝑜 suc 𝑦) = ((𝐴 ·𝑜 𝑦) +𝑜 (𝐴 +𝑜 suc 𝑦)))
44 nnmsuc 7672 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 ·𝑜 suc 𝑦) = ((𝐴 ·𝑜 𝑦) +𝑜 𝐴))
4544oveq1d 6650 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ·𝑜 suc 𝑦) +𝑜 suc 𝑦) = (((𝐴 ·𝑜 𝑦) +𝑜 𝐴) +𝑜 suc 𝑦))
46 nnaass 7687 . . . . . . . . . . . . . 14 (((𝐴 ·𝑜 𝑦) ∈ ω ∧ 𝑦 ∈ ω ∧ suc 𝐴 ∈ ω) → (((𝐴 ·𝑜 𝑦) +𝑜 𝑦) +𝑜 suc 𝐴) = ((𝐴 ·𝑜 𝑦) +𝑜 (𝑦 +𝑜 suc 𝐴)))
4734, 46syl3an3b 1362 . . . . . . . . . . . . 13 (((𝐴 ·𝑜 𝑦) ∈ ω ∧ 𝑦 ∈ ω ∧ 𝐴 ∈ ω) → (((𝐴 ·𝑜 𝑦) +𝑜 𝑦) +𝑜 suc 𝐴) = ((𝐴 ·𝑜 𝑦) +𝑜 (𝑦 +𝑜 suc 𝐴)))
4837, 47syl3an1 1357 . . . . . . . . . . . 12 (((𝐴 ∈ ω ∧ 𝑦 ∈ ω) ∧ 𝑦 ∈ ω ∧ 𝐴 ∈ ω) → (((𝐴 ·𝑜 𝑦) +𝑜 𝑦) +𝑜 suc 𝐴) = ((𝐴 ·𝑜 𝑦) +𝑜 (𝑦 +𝑜 suc 𝐴)))
49483expb 1264 . . . . . . . . . . 11 (((𝐴 ∈ ω ∧ 𝑦 ∈ ω) ∧ (𝑦 ∈ ω ∧ 𝐴 ∈ ω)) → (((𝐴 ·𝑜 𝑦) +𝑜 𝑦) +𝑜 suc 𝐴) = ((𝐴 ·𝑜 𝑦) +𝑜 (𝑦 +𝑜 suc 𝐴)))
5049an42s 869 . . . . . . . . . 10 (((𝐴 ∈ ω ∧ 𝑦 ∈ ω) ∧ (𝐴 ∈ ω ∧ 𝑦 ∈ ω)) → (((𝐴 ·𝑜 𝑦) +𝑜 𝑦) +𝑜 suc 𝐴) = ((𝐴 ·𝑜 𝑦) +𝑜 (𝑦 +𝑜 suc 𝐴)))
5150anidms 676 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (((𝐴 ·𝑜 𝑦) +𝑜 𝑦) +𝑜 suc 𝐴) = ((𝐴 ·𝑜 𝑦) +𝑜 (𝑦 +𝑜 suc 𝐴)))
52 nnacom 7682 . . . . . . . . . . . 12 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 +𝑜 𝑦) = (𝑦 +𝑜 𝐴))
53 suceq 5778 . . . . . . . . . . . 12 ((𝐴 +𝑜 𝑦) = (𝑦 +𝑜 𝐴) → suc (𝐴 +𝑜 𝑦) = suc (𝑦 +𝑜 𝐴))
5452, 53syl 17 . . . . . . . . . . 11 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → suc (𝐴 +𝑜 𝑦) = suc (𝑦 +𝑜 𝐴))
55 nnasuc 7671 . . . . . . . . . . 11 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 +𝑜 suc 𝑦) = suc (𝐴 +𝑜 𝑦))
56 nnasuc 7671 . . . . . . . . . . . 12 ((𝑦 ∈ ω ∧ 𝐴 ∈ ω) → (𝑦 +𝑜 suc 𝐴) = suc (𝑦 +𝑜 𝐴))
5756ancoms 469 . . . . . . . . . . 11 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝑦 +𝑜 suc 𝐴) = suc (𝑦 +𝑜 𝐴))
5854, 55, 573eqtr4d 2664 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 +𝑜 suc 𝑦) = (𝑦 +𝑜 suc 𝐴))
5958oveq2d 6651 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ·𝑜 𝑦) +𝑜 (𝐴 +𝑜 suc 𝑦)) = ((𝐴 ·𝑜 𝑦) +𝑜 (𝑦 +𝑜 suc 𝐴)))
6051, 59eqtr4d 2657 . . . . . . . 8 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (((𝐴 ·𝑜 𝑦) +𝑜 𝑦) +𝑜 suc 𝐴) = ((𝐴 ·𝑜 𝑦) +𝑜 (𝐴 +𝑜 suc 𝑦)))
6143, 45, 603eqtr4d 2664 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ·𝑜 suc 𝑦) +𝑜 suc 𝑦) = (((𝐴 ·𝑜 𝑦) +𝑜 𝑦) +𝑜 suc 𝐴))
6236, 61eqeq12d 2635 . . . . . 6 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((suc 𝐴 ·𝑜 suc 𝑦) = ((𝐴 ·𝑜 suc 𝑦) +𝑜 suc 𝑦) ↔ ((suc 𝐴 ·𝑜 𝑦) +𝑜 suc 𝐴) = (((𝐴 ·𝑜 𝑦) +𝑜 𝑦) +𝑜 suc 𝐴)))
6333, 62syl5ibr 236 . . . . 5 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((suc 𝐴 ·𝑜 𝑦) = ((𝐴 ·𝑜 𝑦) +𝑜 𝑦) → (suc 𝐴 ·𝑜 suc 𝑦) = ((𝐴 ·𝑜 suc 𝑦) +𝑜 suc 𝑦)))
6463expcom 451 . . . 4 (𝑦 ∈ ω → (𝐴 ∈ ω → ((suc 𝐴 ·𝑜 𝑦) = ((𝐴 ·𝑜 𝑦) +𝑜 𝑦) → (suc 𝐴 ·𝑜 suc 𝑦) = ((𝐴 ·𝑜 suc 𝑦) +𝑜 suc 𝑦))))
6511, 16, 21, 32, 64finds2 7079 . . 3 (𝑥 ∈ ω → (𝐴 ∈ ω → (suc 𝐴 ·𝑜 𝑥) = ((𝐴 ·𝑜 𝑥) +𝑜 𝑥)))
666, 65vtoclga 3267 . 2 (𝐵 ∈ ω → (𝐴 ∈ ω → (suc 𝐴 ·𝑜 𝐵) = ((𝐴 ·𝑜 𝐵) +𝑜 𝐵)))
6766impcom 446 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴 ·𝑜 𝐵) = ((𝐴 ·𝑜 𝐵) +𝑜 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1481  wcel 1988  c0 3907  suc csuc 5713  (class class class)co 6635  ωcom 7050   +𝑜 coa 7542   ·𝑜 comu 7543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-ral 2914  df-rex 2915  df-reu 2916  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-oadd 7549  df-omul 7550
This theorem is referenced by:  nnmcom  7691
  Copyright terms: Public domain W3C validator