Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnmcl Structured version   Visualization version   GIF version

Theorem nnmcl 7846
 Description: Closure of multiplication of natural numbers. Proposition 8.17 of [TakeutiZaring] p. 63. (Contributed by NM, 20-Sep-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
nnmcl ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·𝑜 𝐵) ∈ ω)

Proof of Theorem nnmcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6801 . . . . 5 (𝑥 = 𝐵 → (𝐴 ·𝑜 𝑥) = (𝐴 ·𝑜 𝐵))
21eleq1d 2835 . . . 4 (𝑥 = 𝐵 → ((𝐴 ·𝑜 𝑥) ∈ ω ↔ (𝐴 ·𝑜 𝐵) ∈ ω))
32imbi2d 329 . . 3 (𝑥 = 𝐵 → ((𝐴 ∈ ω → (𝐴 ·𝑜 𝑥) ∈ ω) ↔ (𝐴 ∈ ω → (𝐴 ·𝑜 𝐵) ∈ ω)))
4 oveq2 6801 . . . . 5 (𝑥 = ∅ → (𝐴 ·𝑜 𝑥) = (𝐴 ·𝑜 ∅))
54eleq1d 2835 . . . 4 (𝑥 = ∅ → ((𝐴 ·𝑜 𝑥) ∈ ω ↔ (𝐴 ·𝑜 ∅) ∈ ω))
6 oveq2 6801 . . . . 5 (𝑥 = 𝑦 → (𝐴 ·𝑜 𝑥) = (𝐴 ·𝑜 𝑦))
76eleq1d 2835 . . . 4 (𝑥 = 𝑦 → ((𝐴 ·𝑜 𝑥) ∈ ω ↔ (𝐴 ·𝑜 𝑦) ∈ ω))
8 oveq2 6801 . . . . 5 (𝑥 = suc 𝑦 → (𝐴 ·𝑜 𝑥) = (𝐴 ·𝑜 suc 𝑦))
98eleq1d 2835 . . . 4 (𝑥 = suc 𝑦 → ((𝐴 ·𝑜 𝑥) ∈ ω ↔ (𝐴 ·𝑜 suc 𝑦) ∈ ω))
10 nnm0 7839 . . . . 5 (𝐴 ∈ ω → (𝐴 ·𝑜 ∅) = ∅)
11 peano1 7232 . . . . 5 ∅ ∈ ω
1210, 11syl6eqel 2858 . . . 4 (𝐴 ∈ ω → (𝐴 ·𝑜 ∅) ∈ ω)
13 nnacl 7845 . . . . . . . 8 (((𝐴 ·𝑜 𝑦) ∈ ω ∧ 𝐴 ∈ ω) → ((𝐴 ·𝑜 𝑦) +𝑜 𝐴) ∈ ω)
1413expcom 398 . . . . . . 7 (𝐴 ∈ ω → ((𝐴 ·𝑜 𝑦) ∈ ω → ((𝐴 ·𝑜 𝑦) +𝑜 𝐴) ∈ ω))
1514adantr 466 . . . . . 6 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ·𝑜 𝑦) ∈ ω → ((𝐴 ·𝑜 𝑦) +𝑜 𝐴) ∈ ω))
16 nnmsuc 7841 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 ·𝑜 suc 𝑦) = ((𝐴 ·𝑜 𝑦) +𝑜 𝐴))
1716eleq1d 2835 . . . . . 6 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ·𝑜 suc 𝑦) ∈ ω ↔ ((𝐴 ·𝑜 𝑦) +𝑜 𝐴) ∈ ω))
1815, 17sylibrd 249 . . . . 5 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ·𝑜 𝑦) ∈ ω → (𝐴 ·𝑜 suc 𝑦) ∈ ω))
1918expcom 398 . . . 4 (𝑦 ∈ ω → (𝐴 ∈ ω → ((𝐴 ·𝑜 𝑦) ∈ ω → (𝐴 ·𝑜 suc 𝑦) ∈ ω)))
205, 7, 9, 12, 19finds2 7241 . . 3 (𝑥 ∈ ω → (𝐴 ∈ ω → (𝐴 ·𝑜 𝑥) ∈ ω))
213, 20vtoclga 3423 . 2 (𝐵 ∈ ω → (𝐴 ∈ ω → (𝐴 ·𝑜 𝐵) ∈ ω))
2221impcom 394 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·𝑜 𝐵) ∈ ω)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 382   = wceq 1631   ∈ wcel 2145  ∅c0 4063  suc csuc 5868  (class class class)co 6793  ωcom 7212   +𝑜 coa 7710   ·𝑜 comu 7711 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-oadd 7717  df-omul 7718 This theorem is referenced by:  nnecl  7847  nnmcli  7849  nndi  7857  nnmass  7858  nnmsucr  7859  nnmordi  7865  nnmord  7866  nnmword  7867  omabslem  7880  nnneo  7885  nneob  7886  fin1a2lem4  9427  mulclpi  9917
 Copyright terms: Public domain W3C validator