![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nnlogbexp | Structured version Visualization version GIF version |
Description: Identity law for general logarithm with integer base. (Contributed by Stefan O'Rear, 19-Sep-2014.) (Revised by Thierry Arnoux, 27-Sep-2017.) |
Ref | Expression |
---|---|
nnlogbexp | ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ) → (𝐵 logb (𝐵↑𝑀)) = 𝑀) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zgt1rpn0n1 12073 | . . . . . . . 8 ⊢ (𝐵 ∈ (ℤ≥‘2) → (𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1)) | |
2 | 1 | adantr 466 | . . . . . . 7 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ) → (𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1)) |
3 | 2 | simp1d 1135 | . . . . . 6 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ) → 𝐵 ∈ ℝ+) |
4 | 3 | rpcnd 12076 | . . . . 5 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ) → 𝐵 ∈ ℂ) |
5 | 4 | adantr 466 | . . . 4 ⊢ (((𝐵 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ) ∧ 𝑀 = 0) → 𝐵 ∈ ℂ) |
6 | 2 | simp2d 1136 | . . . . 5 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ) → 𝐵 ≠ 0) |
7 | 6 | adantr 466 | . . . 4 ⊢ (((𝐵 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ) ∧ 𝑀 = 0) → 𝐵 ≠ 0) |
8 | 2 | simp3d 1137 | . . . . 5 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ) → 𝐵 ≠ 1) |
9 | 8 | adantr 466 | . . . 4 ⊢ (((𝐵 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ) ∧ 𝑀 = 0) → 𝐵 ≠ 1) |
10 | logb1 24727 | . . . 4 ⊢ ((𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1) → (𝐵 logb 1) = 0) | |
11 | 5, 7, 9, 10 | syl3anc 1475 | . . 3 ⊢ (((𝐵 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ) ∧ 𝑀 = 0) → (𝐵 logb 1) = 0) |
12 | simpr 471 | . . . . . 6 ⊢ (((𝐵 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ) ∧ 𝑀 = 0) → 𝑀 = 0) | |
13 | 12 | oveq2d 6808 | . . . . 5 ⊢ (((𝐵 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ) ∧ 𝑀 = 0) → (𝐵↑𝑀) = (𝐵↑0)) |
14 | 5 | exp0d 13208 | . . . . 5 ⊢ (((𝐵 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ) ∧ 𝑀 = 0) → (𝐵↑0) = 1) |
15 | 13, 14 | eqtrd 2804 | . . . 4 ⊢ (((𝐵 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ) ∧ 𝑀 = 0) → (𝐵↑𝑀) = 1) |
16 | 15 | oveq2d 6808 | . . 3 ⊢ (((𝐵 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ) ∧ 𝑀 = 0) → (𝐵 logb (𝐵↑𝑀)) = (𝐵 logb 1)) |
17 | 11, 16, 12 | 3eqtr4d 2814 | . 2 ⊢ (((𝐵 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ) ∧ 𝑀 = 0) → (𝐵 logb (𝐵↑𝑀)) = 𝑀) |
18 | 4 | adantr 466 | . . . . 5 ⊢ (((𝐵 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ) ∧ 𝑀 ≠ 0) → 𝐵 ∈ ℂ) |
19 | 6 | adantr 466 | . . . . 5 ⊢ (((𝐵 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ) ∧ 𝑀 ≠ 0) → 𝐵 ≠ 0) |
20 | 8 | adantr 466 | . . . . 5 ⊢ (((𝐵 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ) ∧ 𝑀 ≠ 0) → 𝐵 ≠ 1) |
21 | eldifpr 4341 | . . . . 5 ⊢ (𝐵 ∈ (ℂ ∖ {0, 1}) ↔ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ∧ 𝐵 ≠ 1)) | |
22 | 18, 19, 20, 21 | syl3anbrc 1427 | . . . 4 ⊢ (((𝐵 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ) ∧ 𝑀 ≠ 0) → 𝐵 ∈ (ℂ ∖ {0, 1})) |
23 | 3 | adantr 466 | . . . . . . 7 ⊢ (((𝐵 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ) ∧ 𝑀 ≠ 0) → 𝐵 ∈ ℝ+) |
24 | simpr 471 | . . . . . . . 8 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ ℤ) | |
25 | 24 | adantr 466 | . . . . . . 7 ⊢ (((𝐵 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ) ∧ 𝑀 ≠ 0) → 𝑀 ∈ ℤ) |
26 | 23, 25 | rpexpcld 13238 | . . . . . 6 ⊢ (((𝐵 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ) ∧ 𝑀 ≠ 0) → (𝐵↑𝑀) ∈ ℝ+) |
27 | 26 | rpcnne0d 12083 | . . . . 5 ⊢ (((𝐵 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ) ∧ 𝑀 ≠ 0) → ((𝐵↑𝑀) ∈ ℂ ∧ (𝐵↑𝑀) ≠ 0)) |
28 | eldifsn 4451 | . . . . 5 ⊢ ((𝐵↑𝑀) ∈ (ℂ ∖ {0}) ↔ ((𝐵↑𝑀) ∈ ℂ ∧ (𝐵↑𝑀) ≠ 0)) | |
29 | 27, 28 | sylibr 224 | . . . 4 ⊢ (((𝐵 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ) ∧ 𝑀 ≠ 0) → (𝐵↑𝑀) ∈ (ℂ ∖ {0})) |
30 | logbval 24724 | . . . 4 ⊢ ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ (𝐵↑𝑀) ∈ (ℂ ∖ {0})) → (𝐵 logb (𝐵↑𝑀)) = ((log‘(𝐵↑𝑀)) / (log‘𝐵))) | |
31 | 22, 29, 30 | syl2anc 565 | . . 3 ⊢ (((𝐵 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ) ∧ 𝑀 ≠ 0) → (𝐵 logb (𝐵↑𝑀)) = ((log‘(𝐵↑𝑀)) / (log‘𝐵))) |
32 | 24 | zred 11683 | . . . . . . 7 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ ℝ) |
33 | 32 | adantr 466 | . . . . . 6 ⊢ (((𝐵 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ) ∧ 𝑀 ≠ 0) → 𝑀 ∈ ℝ) |
34 | 23, 33 | logcxpd 24697 | . . . . 5 ⊢ (((𝐵 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ) ∧ 𝑀 ≠ 0) → (log‘(𝐵↑𝑐𝑀)) = (𝑀 · (log‘𝐵))) |
35 | 18, 19, 25 | cxpexpzd 24677 | . . . . . 6 ⊢ (((𝐵 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ) ∧ 𝑀 ≠ 0) → (𝐵↑𝑐𝑀) = (𝐵↑𝑀)) |
36 | 35 | fveq2d 6336 | . . . . 5 ⊢ (((𝐵 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ) ∧ 𝑀 ≠ 0) → (log‘(𝐵↑𝑐𝑀)) = (log‘(𝐵↑𝑀))) |
37 | 34, 36 | eqtr3d 2806 | . . . 4 ⊢ (((𝐵 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ) ∧ 𝑀 ≠ 0) → (𝑀 · (log‘𝐵)) = (log‘(𝐵↑𝑀))) |
38 | 37 | oveq1d 6807 | . . 3 ⊢ (((𝐵 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ) ∧ 𝑀 ≠ 0) → ((𝑀 · (log‘𝐵)) / (log‘𝐵)) = ((log‘(𝐵↑𝑀)) / (log‘𝐵))) |
39 | 33 | recnd 10269 | . . . 4 ⊢ (((𝐵 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ) ∧ 𝑀 ≠ 0) → 𝑀 ∈ ℂ) |
40 | 18, 19 | logcld 24537 | . . . 4 ⊢ (((𝐵 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ) ∧ 𝑀 ≠ 0) → (log‘𝐵) ∈ ℂ) |
41 | logne0 24546 | . . . . 5 ⊢ ((𝐵 ∈ ℝ+ ∧ 𝐵 ≠ 1) → (log‘𝐵) ≠ 0) | |
42 | 23, 20, 41 | syl2anc 565 | . . . 4 ⊢ (((𝐵 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ) ∧ 𝑀 ≠ 0) → (log‘𝐵) ≠ 0) |
43 | 39, 40, 42 | divcan4d 11008 | . . 3 ⊢ (((𝐵 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ) ∧ 𝑀 ≠ 0) → ((𝑀 · (log‘𝐵)) / (log‘𝐵)) = 𝑀) |
44 | 31, 38, 43 | 3eqtr2d 2810 | . 2 ⊢ (((𝐵 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ) ∧ 𝑀 ≠ 0) → (𝐵 logb (𝐵↑𝑀)) = 𝑀) |
45 | 17, 44 | pm2.61dane 3029 | 1 ⊢ ((𝐵 ∈ (ℤ≥‘2) ∧ 𝑀 ∈ ℤ) → (𝐵 logb (𝐵↑𝑀)) = 𝑀) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∧ w3a 1070 = wceq 1630 ∈ wcel 2144 ≠ wne 2942 ∖ cdif 3718 {csn 4314 {cpr 4316 ‘cfv 6031 (class class class)co 6792 ℂcc 10135 ℝcr 10136 0cc0 10137 1c1 10138 · cmul 10142 / cdiv 10885 2c2 11271 ℤcz 11578 ℤ≥cuz 11887 ℝ+crp 12034 ↑cexp 13066 logclog 24521 ↑𝑐ccxp 24522 logb clogb 24722 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-inf2 8701 ax-cnex 10193 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 ax-pre-sup 10215 ax-addf 10216 ax-mulf 10217 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-fal 1636 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rmo 3068 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-int 4610 df-iun 4654 df-iin 4655 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-se 5209 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-isom 6040 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-of 7043 df-om 7212 df-1st 7314 df-2nd 7315 df-supp 7446 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-1o 7712 df-2o 7713 df-oadd 7716 df-er 7895 df-map 8010 df-pm 8011 df-ixp 8062 df-en 8109 df-dom 8110 df-sdom 8111 df-fin 8112 df-fsupp 8431 df-fi 8472 df-sup 8503 df-inf 8504 df-oi 8570 df-card 8964 df-cda 9191 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 df-div 10886 df-nn 11222 df-2 11280 df-3 11281 df-4 11282 df-5 11283 df-6 11284 df-7 11285 df-8 11286 df-9 11287 df-n0 11494 df-z 11579 df-dec 11695 df-uz 11888 df-q 11991 df-rp 12035 df-xneg 12150 df-xadd 12151 df-xmul 12152 df-ioo 12383 df-ioc 12384 df-ico 12385 df-icc 12386 df-fz 12533 df-fzo 12673 df-fl 12800 df-mod 12876 df-seq 13008 df-exp 13067 df-fac 13264 df-bc 13293 df-hash 13321 df-shft 14014 df-cj 14046 df-re 14047 df-im 14048 df-sqrt 14182 df-abs 14183 df-limsup 14409 df-clim 14426 df-rlim 14427 df-sum 14624 df-ef 15003 df-sin 15005 df-cos 15006 df-pi 15008 df-struct 16065 df-ndx 16066 df-slot 16067 df-base 16069 df-sets 16070 df-ress 16071 df-plusg 16161 df-mulr 16162 df-starv 16163 df-sca 16164 df-vsca 16165 df-ip 16166 df-tset 16167 df-ple 16168 df-ds 16171 df-unif 16172 df-hom 16173 df-cco 16174 df-rest 16290 df-topn 16291 df-0g 16309 df-gsum 16310 df-topgen 16311 df-pt 16312 df-prds 16315 df-xrs 16369 df-qtop 16374 df-imas 16375 df-xps 16377 df-mre 16453 df-mrc 16454 df-acs 16456 df-mgm 17449 df-sgrp 17491 df-mnd 17502 df-submnd 17543 df-mulg 17748 df-cntz 17956 df-cmn 18401 df-psmet 19952 df-xmet 19953 df-met 19954 df-bl 19955 df-mopn 19956 df-fbas 19957 df-fg 19958 df-cnfld 19961 df-top 20918 df-topon 20935 df-topsp 20957 df-bases 20970 df-cld 21043 df-ntr 21044 df-cls 21045 df-nei 21122 df-lp 21160 df-perf 21161 df-cn 21251 df-cnp 21252 df-haus 21339 df-tx 21585 df-hmeo 21778 df-fil 21869 df-fm 21961 df-flim 21962 df-flf 21963 df-xms 22344 df-ms 22345 df-tms 22346 df-cncf 22900 df-limc 23849 df-dv 23850 df-log 24523 df-cxp 24524 df-logb 24723 |
This theorem is referenced by: dya2ub 30666 logbpw2m1 42879 fllog2 42880 blenpw2 42890 |
Copyright terms: Public domain | W3C validator |