![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nnlog2ge0lt1 | Structured version Visualization version GIF version |
Description: A positive integer is 1 iff its binary logarithm is between 0 and 1. (Contributed by AV, 30-May-2020.) |
Ref | Expression |
---|---|
nnlog2ge0lt1 | ⊢ (𝑁 ∈ ℕ → (𝑁 = 1 ↔ (0 ≤ (2 logb 𝑁) ∧ (2 logb 𝑁) < 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0le0 11148 | . . . . 5 ⊢ 0 ≤ 0 | |
2 | 2cn 11129 | . . . . . 6 ⊢ 2 ∈ ℂ | |
3 | 2ne0 11151 | . . . . . 6 ⊢ 2 ≠ 0 | |
4 | 1ne2 11278 | . . . . . . 7 ⊢ 1 ≠ 2 | |
5 | 4 | necomi 2877 | . . . . . 6 ⊢ 2 ≠ 1 |
6 | logb1 24552 | . . . . . 6 ⊢ ((2 ∈ ℂ ∧ 2 ≠ 0 ∧ 2 ≠ 1) → (2 logb 1) = 0) | |
7 | 2, 3, 5, 6 | mp3an 1464 | . . . . 5 ⊢ (2 logb 1) = 0 |
8 | 1, 7 | breqtrri 4712 | . . . 4 ⊢ 0 ≤ (2 logb 1) |
9 | 0lt1 10588 | . . . . 5 ⊢ 0 < 1 | |
10 | 7, 9 | eqbrtri 4706 | . . . 4 ⊢ (2 logb 1) < 1 |
11 | 8, 10 | pm3.2i 470 | . . 3 ⊢ (0 ≤ (2 logb 1) ∧ (2 logb 1) < 1) |
12 | oveq2 6698 | . . . . 5 ⊢ (𝑁 = 1 → (2 logb 𝑁) = (2 logb 1)) | |
13 | 12 | breq2d 4697 | . . . 4 ⊢ (𝑁 = 1 → (0 ≤ (2 logb 𝑁) ↔ 0 ≤ (2 logb 1))) |
14 | 12 | breq1d 4695 | . . . 4 ⊢ (𝑁 = 1 → ((2 logb 𝑁) < 1 ↔ (2 logb 1) < 1)) |
15 | 13, 14 | anbi12d 747 | . . 3 ⊢ (𝑁 = 1 → ((0 ≤ (2 logb 𝑁) ∧ (2 logb 𝑁) < 1) ↔ (0 ≤ (2 logb 1) ∧ (2 logb 1) < 1))) |
16 | 11, 15 | mpbiri 248 | . 2 ⊢ (𝑁 = 1 → (0 ≤ (2 logb 𝑁) ∧ (2 logb 𝑁) < 1)) |
17 | 2z 11447 | . . . . . . 7 ⊢ 2 ∈ ℤ | |
18 | uzid 11740 | . . . . . . 7 ⊢ (2 ∈ ℤ → 2 ∈ (ℤ≥‘2)) | |
19 | 17, 18 | ax-mp 5 | . . . . . 6 ⊢ 2 ∈ (ℤ≥‘2) |
20 | 19 | a1i 11 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 2 ∈ (ℤ≥‘2)) |
21 | nnrp 11880 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+) | |
22 | logbge0b 42682 | . . . . 5 ⊢ ((2 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℝ+) → (0 ≤ (2 logb 𝑁) ↔ 1 ≤ 𝑁)) | |
23 | 20, 21, 22 | syl2anc 694 | . . . 4 ⊢ (𝑁 ∈ ℕ → (0 ≤ (2 logb 𝑁) ↔ 1 ≤ 𝑁)) |
24 | logblt1b 42683 | . . . . 5 ⊢ ((2 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℝ+) → ((2 logb 𝑁) < 1 ↔ 𝑁 < 2)) | |
25 | 20, 21, 24 | syl2anc 694 | . . . 4 ⊢ (𝑁 ∈ ℕ → ((2 logb 𝑁) < 1 ↔ 𝑁 < 2)) |
26 | 23, 25 | anbi12d 747 | . . 3 ⊢ (𝑁 ∈ ℕ → ((0 ≤ (2 logb 𝑁) ∧ (2 logb 𝑁) < 1) ↔ (1 ≤ 𝑁 ∧ 𝑁 < 2))) |
27 | df-2 11117 | . . . . . . . 8 ⊢ 2 = (1 + 1) | |
28 | 27 | breq2i 4693 | . . . . . . 7 ⊢ (𝑁 < 2 ↔ 𝑁 < (1 + 1)) |
29 | 28 | a1i 11 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (𝑁 < 2 ↔ 𝑁 < (1 + 1))) |
30 | 29 | anbi2d 740 | . . . . 5 ⊢ (𝑁 ∈ ℕ → ((1 ≤ 𝑁 ∧ 𝑁 < 2) ↔ (1 ≤ 𝑁 ∧ 𝑁 < (1 + 1)))) |
31 | nnre 11065 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ) | |
32 | 1zzd 11446 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 1 ∈ ℤ) | |
33 | flbi 12657 | . . . . . 6 ⊢ ((𝑁 ∈ ℝ ∧ 1 ∈ ℤ) → ((⌊‘𝑁) = 1 ↔ (1 ≤ 𝑁 ∧ 𝑁 < (1 + 1)))) | |
34 | 31, 32, 33 | syl2anc 694 | . . . . 5 ⊢ (𝑁 ∈ ℕ → ((⌊‘𝑁) = 1 ↔ (1 ≤ 𝑁 ∧ 𝑁 < (1 + 1)))) |
35 | 30, 34 | bitr4d 271 | . . . 4 ⊢ (𝑁 ∈ ℕ → ((1 ≤ 𝑁 ∧ 𝑁 < 2) ↔ (⌊‘𝑁) = 1)) |
36 | nnz 11437 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | |
37 | flid 12649 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℤ → (⌊‘𝑁) = 𝑁) | |
38 | 36, 37 | syl 17 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → (⌊‘𝑁) = 𝑁) |
39 | 38 | eqcomd 2657 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 𝑁 = (⌊‘𝑁)) |
40 | 39 | adantr 480 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ (⌊‘𝑁) = 1) → 𝑁 = (⌊‘𝑁)) |
41 | simpr 476 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ (⌊‘𝑁) = 1) → (⌊‘𝑁) = 1) | |
42 | 40, 41 | eqtrd 2685 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ (⌊‘𝑁) = 1) → 𝑁 = 1) |
43 | 42 | ex 449 | . . . 4 ⊢ (𝑁 ∈ ℕ → ((⌊‘𝑁) = 1 → 𝑁 = 1)) |
44 | 35, 43 | sylbid 230 | . . 3 ⊢ (𝑁 ∈ ℕ → ((1 ≤ 𝑁 ∧ 𝑁 < 2) → 𝑁 = 1)) |
45 | 26, 44 | sylbid 230 | . 2 ⊢ (𝑁 ∈ ℕ → ((0 ≤ (2 logb 𝑁) ∧ (2 logb 𝑁) < 1) → 𝑁 = 1)) |
46 | 16, 45 | impbid2 216 | 1 ⊢ (𝑁 ∈ ℕ → (𝑁 = 1 ↔ (0 ≤ (2 logb 𝑁) ∧ (2 logb 𝑁) < 1))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ≠ wne 2823 class class class wbr 4685 ‘cfv 5926 (class class class)co 6690 ℂcc 9972 ℝcr 9973 0cc0 9974 1c1 9975 + caddc 9977 < clt 10112 ≤ cle 10113 ℕcn 11058 2c2 11108 ℤcz 11415 ℤ≥cuz 11725 ℝ+crp 11870 ⌊cfl 12631 logb clogb 24547 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-inf2 8576 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 ax-pre-sup 10052 ax-addf 10053 ax-mulf 10054 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-fal 1529 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-iin 4555 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-se 5103 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-isom 5935 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-of 6939 df-om 7108 df-1st 7210 df-2nd 7211 df-supp 7341 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-2o 7606 df-oadd 7609 df-er 7787 df-map 7901 df-pm 7902 df-ixp 7951 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-fsupp 8317 df-fi 8358 df-sup 8389 df-inf 8390 df-oi 8456 df-card 8803 df-cda 9028 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-div 10723 df-nn 11059 df-2 11117 df-3 11118 df-4 11119 df-5 11120 df-6 11121 df-7 11122 df-8 11123 df-9 11124 df-n0 11331 df-z 11416 df-dec 11532 df-uz 11726 df-q 11827 df-rp 11871 df-xneg 11984 df-xadd 11985 df-xmul 11986 df-ioo 12217 df-ioc 12218 df-ico 12219 df-icc 12220 df-fz 12365 df-fzo 12505 df-fl 12633 df-mod 12709 df-seq 12842 df-exp 12901 df-fac 13101 df-bc 13130 df-hash 13158 df-shft 13851 df-cj 13883 df-re 13884 df-im 13885 df-sqrt 14019 df-abs 14020 df-limsup 14246 df-clim 14263 df-rlim 14264 df-sum 14461 df-ef 14842 df-sin 14844 df-cos 14845 df-pi 14847 df-struct 15906 df-ndx 15907 df-slot 15908 df-base 15910 df-sets 15911 df-ress 15912 df-plusg 16001 df-mulr 16002 df-starv 16003 df-sca 16004 df-vsca 16005 df-ip 16006 df-tset 16007 df-ple 16008 df-ds 16011 df-unif 16012 df-hom 16013 df-cco 16014 df-rest 16130 df-topn 16131 df-0g 16149 df-gsum 16150 df-topgen 16151 df-pt 16152 df-prds 16155 df-xrs 16209 df-qtop 16214 df-imas 16215 df-xps 16217 df-mre 16293 df-mrc 16294 df-acs 16296 df-mgm 17289 df-sgrp 17331 df-mnd 17342 df-submnd 17383 df-mulg 17588 df-cntz 17796 df-cmn 18241 df-psmet 19786 df-xmet 19787 df-met 19788 df-bl 19789 df-mopn 19790 df-fbas 19791 df-fg 19792 df-cnfld 19795 df-top 20747 df-topon 20764 df-topsp 20785 df-bases 20798 df-cld 20871 df-ntr 20872 df-cls 20873 df-nei 20950 df-lp 20988 df-perf 20989 df-cn 21079 df-cnp 21080 df-haus 21167 df-tx 21413 df-hmeo 21606 df-fil 21697 df-fm 21789 df-flim 21790 df-flf 21791 df-xms 22172 df-ms 22173 df-tms 22174 df-cncf 22728 df-limc 23675 df-dv 23676 df-log 24348 df-logb 24548 |
This theorem is referenced by: blen1b 42707 |
Copyright terms: Public domain | W3C validator |