Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nnlog2ge0lt1 Structured version   Visualization version   GIF version

Theorem nnlog2ge0lt1 42685
 Description: A positive integer is 1 iff its binary logarithm is between 0 and 1. (Contributed by AV, 30-May-2020.)
Assertion
Ref Expression
nnlog2ge0lt1 (𝑁 ∈ ℕ → (𝑁 = 1 ↔ (0 ≤ (2 logb 𝑁) ∧ (2 logb 𝑁) < 1)))

Proof of Theorem nnlog2ge0lt1
StepHypRef Expression
1 0le0 11148 . . . . 5 0 ≤ 0
2 2cn 11129 . . . . . 6 2 ∈ ℂ
3 2ne0 11151 . . . . . 6 2 ≠ 0
4 1ne2 11278 . . . . . . 7 1 ≠ 2
54necomi 2877 . . . . . 6 2 ≠ 1
6 logb1 24552 . . . . . 6 ((2 ∈ ℂ ∧ 2 ≠ 0 ∧ 2 ≠ 1) → (2 logb 1) = 0)
72, 3, 5, 6mp3an 1464 . . . . 5 (2 logb 1) = 0
81, 7breqtrri 4712 . . . 4 0 ≤ (2 logb 1)
9 0lt1 10588 . . . . 5 0 < 1
107, 9eqbrtri 4706 . . . 4 (2 logb 1) < 1
118, 10pm3.2i 470 . . 3 (0 ≤ (2 logb 1) ∧ (2 logb 1) < 1)
12 oveq2 6698 . . . . 5 (𝑁 = 1 → (2 logb 𝑁) = (2 logb 1))
1312breq2d 4697 . . . 4 (𝑁 = 1 → (0 ≤ (2 logb 𝑁) ↔ 0 ≤ (2 logb 1)))
1412breq1d 4695 . . . 4 (𝑁 = 1 → ((2 logb 𝑁) < 1 ↔ (2 logb 1) < 1))
1513, 14anbi12d 747 . . 3 (𝑁 = 1 → ((0 ≤ (2 logb 𝑁) ∧ (2 logb 𝑁) < 1) ↔ (0 ≤ (2 logb 1) ∧ (2 logb 1) < 1)))
1611, 15mpbiri 248 . 2 (𝑁 = 1 → (0 ≤ (2 logb 𝑁) ∧ (2 logb 𝑁) < 1))
17 2z 11447 . . . . . . 7 2 ∈ ℤ
18 uzid 11740 . . . . . . 7 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
1917, 18ax-mp 5 . . . . . 6 2 ∈ (ℤ‘2)
2019a1i 11 . . . . 5 (𝑁 ∈ ℕ → 2 ∈ (ℤ‘2))
21 nnrp 11880 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
22 logbge0b 42682 . . . . 5 ((2 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℝ+) → (0 ≤ (2 logb 𝑁) ↔ 1 ≤ 𝑁))
2320, 21, 22syl2anc 694 . . . 4 (𝑁 ∈ ℕ → (0 ≤ (2 logb 𝑁) ↔ 1 ≤ 𝑁))
24 logblt1b 42683 . . . . 5 ((2 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℝ+) → ((2 logb 𝑁) < 1 ↔ 𝑁 < 2))
2520, 21, 24syl2anc 694 . . . 4 (𝑁 ∈ ℕ → ((2 logb 𝑁) < 1 ↔ 𝑁 < 2))
2623, 25anbi12d 747 . . 3 (𝑁 ∈ ℕ → ((0 ≤ (2 logb 𝑁) ∧ (2 logb 𝑁) < 1) ↔ (1 ≤ 𝑁𝑁 < 2)))
27 df-2 11117 . . . . . . . 8 2 = (1 + 1)
2827breq2i 4693 . . . . . . 7 (𝑁 < 2 ↔ 𝑁 < (1 + 1))
2928a1i 11 . . . . . 6 (𝑁 ∈ ℕ → (𝑁 < 2 ↔ 𝑁 < (1 + 1)))
3029anbi2d 740 . . . . 5 (𝑁 ∈ ℕ → ((1 ≤ 𝑁𝑁 < 2) ↔ (1 ≤ 𝑁𝑁 < (1 + 1))))
31 nnre 11065 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
32 1zzd 11446 . . . . . 6 (𝑁 ∈ ℕ → 1 ∈ ℤ)
33 flbi 12657 . . . . . 6 ((𝑁 ∈ ℝ ∧ 1 ∈ ℤ) → ((⌊‘𝑁) = 1 ↔ (1 ≤ 𝑁𝑁 < (1 + 1))))
3431, 32, 33syl2anc 694 . . . . 5 (𝑁 ∈ ℕ → ((⌊‘𝑁) = 1 ↔ (1 ≤ 𝑁𝑁 < (1 + 1))))
3530, 34bitr4d 271 . . . 4 (𝑁 ∈ ℕ → ((1 ≤ 𝑁𝑁 < 2) ↔ (⌊‘𝑁) = 1))
36 nnz 11437 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
37 flid 12649 . . . . . . . . 9 (𝑁 ∈ ℤ → (⌊‘𝑁) = 𝑁)
3836, 37syl 17 . . . . . . . 8 (𝑁 ∈ ℕ → (⌊‘𝑁) = 𝑁)
3938eqcomd 2657 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 = (⌊‘𝑁))
4039adantr 480 . . . . . 6 ((𝑁 ∈ ℕ ∧ (⌊‘𝑁) = 1) → 𝑁 = (⌊‘𝑁))
41 simpr 476 . . . . . 6 ((𝑁 ∈ ℕ ∧ (⌊‘𝑁) = 1) → (⌊‘𝑁) = 1)
4240, 41eqtrd 2685 . . . . 5 ((𝑁 ∈ ℕ ∧ (⌊‘𝑁) = 1) → 𝑁 = 1)
4342ex 449 . . . 4 (𝑁 ∈ ℕ → ((⌊‘𝑁) = 1 → 𝑁 = 1))
4435, 43sylbid 230 . . 3 (𝑁 ∈ ℕ → ((1 ≤ 𝑁𝑁 < 2) → 𝑁 = 1))
4526, 44sylbid 230 . 2 (𝑁 ∈ ℕ → ((0 ≤ (2 logb 𝑁) ∧ (2 logb 𝑁) < 1) → 𝑁 = 1))
4616, 45impbid2 216 1 (𝑁 ∈ ℕ → (𝑁 = 1 ↔ (0 ≤ (2 logb 𝑁) ∧ (2 logb 𝑁) < 1)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1523   ∈ wcel 2030   ≠ wne 2823   class class class wbr 4685  ‘cfv 5926  (class class class)co 6690  ℂcc 9972  ℝcr 9973  0cc0 9974  1c1 9975   + caddc 9977   < clt 10112   ≤ cle 10113  ℕcn 11058  2c2 11108  ℤcz 11415  ℤ≥cuz 11725  ℝ+crp 11870  ⌊cfl 12631   logb clogb 24547 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ioo 12217  df-ioc 12218  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-fl 12633  df-mod 12709  df-seq 12842  df-exp 12901  df-fac 13101  df-bc 13130  df-hash 13158  df-shft 13851  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-limsup 14246  df-clim 14263  df-rlim 14264  df-sum 14461  df-ef 14842  df-sin 14844  df-cos 14845  df-pi 14847  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-hom 16013  df-cco 16014  df-rest 16130  df-topn 16131  df-0g 16149  df-gsum 16150  df-topgen 16151  df-pt 16152  df-prds 16155  df-xrs 16209  df-qtop 16214  df-imas 16215  df-xps 16217  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-submnd 17383  df-mulg 17588  df-cntz 17796  df-cmn 18241  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-fbas 19791  df-fg 19792  df-cnfld 19795  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-cld 20871  df-ntr 20872  df-cls 20873  df-nei 20950  df-lp 20988  df-perf 20989  df-cn 21079  df-cnp 21080  df-haus 21167  df-tx 21413  df-hmeo 21606  df-fil 21697  df-fm 21789  df-flim 21790  df-flf 21791  df-xms 22172  df-ms 22173  df-tms 22174  df-cncf 22728  df-limc 23675  df-dv 23676  df-log 24348  df-logb 24548 This theorem is referenced by:  blen1b  42707
 Copyright terms: Public domain W3C validator