![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nnlim | Structured version Visualization version GIF version |
Description: A natural number is not a limit ordinal. (Contributed by NM, 18-Oct-1995.) |
Ref | Expression |
---|---|
nnlim | ⊢ (𝐴 ∈ ω → ¬ Lim 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnord 7115 | . . 3 ⊢ (𝐴 ∈ ω → Ord 𝐴) | |
2 | ordirr 5779 | . . 3 ⊢ (Ord 𝐴 → ¬ 𝐴 ∈ 𝐴) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝐴 ∈ ω → ¬ 𝐴 ∈ 𝐴) |
4 | elom 7110 | . . . 4 ⊢ (𝐴 ∈ ω ↔ (𝐴 ∈ On ∧ ∀𝑥(Lim 𝑥 → 𝐴 ∈ 𝑥))) | |
5 | 4 | simprbi 479 | . . 3 ⊢ (𝐴 ∈ ω → ∀𝑥(Lim 𝑥 → 𝐴 ∈ 𝑥)) |
6 | limeq 5773 | . . . . 5 ⊢ (𝑥 = 𝐴 → (Lim 𝑥 ↔ Lim 𝐴)) | |
7 | eleq2 2719 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝐴)) | |
8 | 6, 7 | imbi12d 333 | . . . 4 ⊢ (𝑥 = 𝐴 → ((Lim 𝑥 → 𝐴 ∈ 𝑥) ↔ (Lim 𝐴 → 𝐴 ∈ 𝐴))) |
9 | 8 | spcgv 3324 | . . 3 ⊢ (𝐴 ∈ ω → (∀𝑥(Lim 𝑥 → 𝐴 ∈ 𝑥) → (Lim 𝐴 → 𝐴 ∈ 𝐴))) |
10 | 5, 9 | mpd 15 | . 2 ⊢ (𝐴 ∈ ω → (Lim 𝐴 → 𝐴 ∈ 𝐴)) |
11 | 3, 10 | mtod 189 | 1 ⊢ (𝐴 ∈ ω → ¬ Lim 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1521 = wceq 1523 ∈ wcel 2030 Ord word 5760 Oncon0 5761 Lim wlim 5762 ωcom 7107 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-tr 4786 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-om 7108 |
This theorem is referenced by: omssnlim 7121 nnsuc 7124 cantnfp1lem2 8614 cantnflem1 8624 cnfcom2lem 8636 1oequni2o 33346 finxp1o 33359 finxpreclem4 33361 |
Copyright terms: Public domain | W3C validator |