![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nnind | Structured version Visualization version GIF version |
Description: Principle of Mathematical Induction (inference schema). The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. See nnaddcl 11080 for an example of its use. See nn0ind 11510 for induction on nonnegative integers and uzind 11507, uzind4 11784 for induction on an arbitrary upper set of integers. See indstr 11794 for strong induction. See also nnindALT 11077. This is an alternative for Metamath 100 proof #74. (Contributed by NM, 10-Jan-1997.) (Revised by Mario Carneiro, 16-Jun-2013.) |
Ref | Expression |
---|---|
nnind.1 | ⊢ (𝑥 = 1 → (𝜑 ↔ 𝜓)) |
nnind.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) |
nnind.3 | ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) |
nnind.4 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) |
nnind.5 | ⊢ 𝜓 |
nnind.6 | ⊢ (𝑦 ∈ ℕ → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
nnind | ⊢ (𝐴 ∈ ℕ → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nn 11069 | . . . . . 6 ⊢ 1 ∈ ℕ | |
2 | nnind.5 | . . . . . 6 ⊢ 𝜓 | |
3 | nnind.1 | . . . . . . 7 ⊢ (𝑥 = 1 → (𝜑 ↔ 𝜓)) | |
4 | 3 | elrab 3396 | . . . . . 6 ⊢ (1 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ (1 ∈ ℕ ∧ 𝜓)) |
5 | 1, 2, 4 | mpbir2an 975 | . . . . 5 ⊢ 1 ∈ {𝑥 ∈ ℕ ∣ 𝜑} |
6 | elrabi 3391 | . . . . . . 7 ⊢ (𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} → 𝑦 ∈ ℕ) | |
7 | peano2nn 11070 | . . . . . . . . . 10 ⊢ (𝑦 ∈ ℕ → (𝑦 + 1) ∈ ℕ) | |
8 | 7 | a1d 25 | . . . . . . . . 9 ⊢ (𝑦 ∈ ℕ → (𝑦 ∈ ℕ → (𝑦 + 1) ∈ ℕ)) |
9 | nnind.6 | . . . . . . . . 9 ⊢ (𝑦 ∈ ℕ → (𝜒 → 𝜃)) | |
10 | 8, 9 | anim12d 585 | . . . . . . . 8 ⊢ (𝑦 ∈ ℕ → ((𝑦 ∈ ℕ ∧ 𝜒) → ((𝑦 + 1) ∈ ℕ ∧ 𝜃))) |
11 | nnind.2 | . . . . . . . . 9 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) | |
12 | 11 | elrab 3396 | . . . . . . . 8 ⊢ (𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ (𝑦 ∈ ℕ ∧ 𝜒)) |
13 | nnind.3 | . . . . . . . . 9 ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) | |
14 | 13 | elrab 3396 | . . . . . . . 8 ⊢ ((𝑦 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ ((𝑦 + 1) ∈ ℕ ∧ 𝜃)) |
15 | 10, 12, 14 | 3imtr4g 285 | . . . . . . 7 ⊢ (𝑦 ∈ ℕ → (𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} → (𝑦 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑})) |
16 | 6, 15 | mpcom 38 | . . . . . 6 ⊢ (𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} → (𝑦 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑}) |
17 | 16 | rgen 2951 | . . . . 5 ⊢ ∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} (𝑦 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑} |
18 | peano5nni 11061 | . . . . 5 ⊢ ((1 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ∧ ∀𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝜑} (𝑦 + 1) ∈ {𝑥 ∈ ℕ ∣ 𝜑}) → ℕ ⊆ {𝑥 ∈ ℕ ∣ 𝜑}) | |
19 | 5, 17, 18 | mp2an 708 | . . . 4 ⊢ ℕ ⊆ {𝑥 ∈ ℕ ∣ 𝜑} |
20 | 19 | sseli 3632 | . . 3 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ {𝑥 ∈ ℕ ∣ 𝜑}) |
21 | nnind.4 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) | |
22 | 21 | elrab 3396 | . . 3 ⊢ (𝐴 ∈ {𝑥 ∈ ℕ ∣ 𝜑} ↔ (𝐴 ∈ ℕ ∧ 𝜏)) |
23 | 20, 22 | sylib 208 | . 2 ⊢ (𝐴 ∈ ℕ → (𝐴 ∈ ℕ ∧ 𝜏)) |
24 | 23 | simprd 478 | 1 ⊢ (𝐴 ∈ ℕ → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ∀wral 2941 {crab 2945 ⊆ wss 3607 (class class class)co 6690 1c1 9975 + caddc 9977 ℕcn 11058 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-1cn 10032 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-ov 6693 df-om 7108 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-nn 11059 |
This theorem is referenced by: nnindALT 11077 nn1m1nn 11078 nnaddcl 11080 nnmulcl 11081 nnge1 11084 nnsub 11097 nneo 11499 peano5uzi 11504 nn0ind-raph 11515 ser1const 12897 expcllem 12911 expeq0 12930 seqcoll 13286 relexpsucnnl 13816 relexpcnv 13819 relexprelg 13822 relexpnndm 13825 relexpaddnn 13835 climcndslem2 14626 sqrt2irr 15023 gcdmultiple 15316 rplpwr 15323 prmind2 15445 prmdvdsexp 15474 eulerthlem2 15534 pcmpt 15643 prmpwdvds 15655 vdwlem10 15741 mulgnnass 17623 mulgnnassOLD 17624 imasdsf1olem 22225 ovolunlem1a 23310 ovolicc2lem3 23333 voliunlem1 23364 volsup 23370 dvexp 23761 plyco 24042 dgrcolem1 24074 vieta1 24112 emcllem6 24772 bposlem5 25058 2sqlem10 25198 dchrisum0flb 25244 iuninc 29505 nnindd 29694 ofldchr 29942 nexple 30199 esumfzf 30259 rrvsum 30644 subfacp1lem6 31293 cvmliftlem10 31402 bcprod 31750 faclimlem1 31755 incsequz 33674 bfplem1 33751 2nn0ind 37827 expmordi 37829 relexpxpnnidm 38312 relexpss1d 38314 iunrelexpmin1 38317 relexpmulnn 38318 trclrelexplem 38320 iunrelexpmin2 38321 relexp0a 38325 cotrcltrcl 38334 trclimalb2 38335 cotrclrcl 38351 inductionexd 38770 fmuldfeq 40133 dvnmptconst 40474 stoweidlem20 40555 wallispilem4 40603 wallispi2lem1 40606 wallispi2lem2 40607 dirkertrigeqlem1 40633 iccelpart 41694 nn0sumshdiglem2 42741 |
Copyright terms: Public domain | W3C validator |