Step | Hyp | Ref
| Expression |
1 | | iftrue 4125 |
. . . . . . . 8
⊢ ((𝑛 = 1 ∨ ¬ (𝑛 − 1) ∈ 𝐴) → if((𝑛 = 1 ∨ ¬ (𝑛 − 1) ∈ 𝐴), ∅, (𝐺‘(𝑛 − 1))) = ∅) |
2 | 1 | adantl 481 |
. . . . . . 7
⊢ ((𝑛 ∈ ℕ ∧ (𝑛 = 1 ∨ ¬ (𝑛 − 1) ∈ 𝐴)) → if((𝑛 = 1 ∨ ¬ (𝑛 − 1) ∈ 𝐴), ∅, (𝐺‘(𝑛 − 1))) = ∅) |
3 | | 0ex 4823 |
. . . . . . . . 9
⊢ ∅
∈ V |
4 | 3 | snid 4241 |
. . . . . . . 8
⊢ ∅
∈ {∅} |
5 | | elun2 3814 |
. . . . . . . 8
⊢ (∅
∈ {∅} → ∅ ∈ (𝑋 ∪ {∅})) |
6 | 4, 5 | ax-mp 5 |
. . . . . . 7
⊢ ∅
∈ (𝑋 ∪
{∅}) |
7 | 2, 6 | syl6eqel 2738 |
. . . . . 6
⊢ ((𝑛 ∈ ℕ ∧ (𝑛 = 1 ∨ ¬ (𝑛 − 1) ∈ 𝐴)) → if((𝑛 = 1 ∨ ¬ (𝑛 − 1) ∈ 𝐴), ∅, (𝐺‘(𝑛 − 1))) ∈ (𝑋 ∪ {∅})) |
8 | 7 | adantll 750 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ (𝑛 = 1 ∨ ¬ (𝑛 − 1) ∈ 𝐴)) → if((𝑛 = 1 ∨ ¬ (𝑛 − 1) ∈ 𝐴), ∅, (𝐺‘(𝑛 − 1))) ∈ (𝑋 ∪ {∅})) |
9 | | iffalse 4128 |
. . . . . . 7
⊢ (¬
(𝑛 = 1 ∨ ¬ (𝑛 − 1) ∈ 𝐴) → if((𝑛 = 1 ∨ ¬ (𝑛 − 1) ∈ 𝐴), ∅, (𝐺‘(𝑛 − 1))) = (𝐺‘(𝑛 − 1))) |
10 | 9 | adantl 481 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ ¬ (𝑛 = 1 ∨ ¬ (𝑛 − 1) ∈ 𝐴)) → if((𝑛 = 1 ∨ ¬ (𝑛 − 1) ∈ 𝐴), ∅, (𝐺‘(𝑛 − 1))) = (𝐺‘(𝑛 − 1))) |
11 | | nnfoctbdjlem.g |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐺:𝐴–1-1-onto→𝑋) |
12 | | f1of 6175 |
. . . . . . . . . . 11
⊢ (𝐺:𝐴–1-1-onto→𝑋 → 𝐺:𝐴⟶𝑋) |
13 | 11, 12 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐺:𝐴⟶𝑋) |
14 | 13 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ (𝑛 = 1 ∨ ¬ (𝑛 − 1) ∈ 𝐴)) → 𝐺:𝐴⟶𝑋) |
15 | | pm2.46 412 |
. . . . . . . . . . 11
⊢ (¬
(𝑛 = 1 ∨ ¬ (𝑛 − 1) ∈ 𝐴) → ¬ ¬ (𝑛 − 1) ∈ 𝐴) |
16 | 15 | notnotrd 128 |
. . . . . . . . . 10
⊢ (¬
(𝑛 = 1 ∨ ¬ (𝑛 − 1) ∈ 𝐴) → (𝑛 − 1) ∈ 𝐴) |
17 | 16 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ (𝑛 = 1 ∨ ¬ (𝑛 − 1) ∈ 𝐴)) → (𝑛 − 1) ∈ 𝐴) |
18 | 14, 17 | ffvelrnd 6400 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ (𝑛 = 1 ∨ ¬ (𝑛 − 1) ∈ 𝐴)) → (𝐺‘(𝑛 − 1)) ∈ 𝑋) |
19 | 18 | adantlr 751 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ ¬ (𝑛 = 1 ∨ ¬ (𝑛 − 1) ∈ 𝐴)) → (𝐺‘(𝑛 − 1)) ∈ 𝑋) |
20 | | elun1 3813 |
. . . . . . 7
⊢ ((𝐺‘(𝑛 − 1)) ∈ 𝑋 → (𝐺‘(𝑛 − 1)) ∈ (𝑋 ∪ {∅})) |
21 | 19, 20 | syl 17 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ ¬ (𝑛 = 1 ∨ ¬ (𝑛 − 1) ∈ 𝐴)) → (𝐺‘(𝑛 − 1)) ∈ (𝑋 ∪ {∅})) |
22 | 10, 21 | eqeltrd 2730 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ ¬ (𝑛 = 1 ∨ ¬ (𝑛 − 1) ∈ 𝐴)) → if((𝑛 = 1 ∨ ¬ (𝑛 − 1) ∈ 𝐴), ∅, (𝐺‘(𝑛 − 1))) ∈ (𝑋 ∪ {∅})) |
23 | 8, 22 | pm2.61dan 849 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → if((𝑛 = 1 ∨ ¬ (𝑛 − 1) ∈ 𝐴), ∅, (𝐺‘(𝑛 − 1))) ∈ (𝑋 ∪ {∅})) |
24 | | nnfoctbdjlem.f |
. . . 4
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if((𝑛 = 1 ∨ ¬ (𝑛 − 1) ∈ 𝐴), ∅, (𝐺‘(𝑛 − 1)))) |
25 | 23, 24 | fmptd 6425 |
. . 3
⊢ (𝜑 → 𝐹:ℕ⟶(𝑋 ∪ {∅})) |
26 | | simpr 476 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑋) → 𝑦 ∈ 𝑋) |
27 | | f1ofo 6182 |
. . . . . . . . . . . . 13
⊢ (𝐺:𝐴–1-1-onto→𝑋 → 𝐺:𝐴–onto→𝑋) |
28 | | forn 6156 |
. . . . . . . . . . . . 13
⊢ (𝐺:𝐴–onto→𝑋 → ran 𝐺 = 𝑋) |
29 | 11, 27, 28 | 3syl 18 |
. . . . . . . . . . . 12
⊢ (𝜑 → ran 𝐺 = 𝑋) |
30 | 29 | eqcomd 2657 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑋 = ran 𝐺) |
31 | 30 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑋) → 𝑋 = ran 𝐺) |
32 | 26, 31 | eleqtrd 2732 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑋) → 𝑦 ∈ ran 𝐺) |
33 | 13 | ffnd 6084 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐺 Fn 𝐴) |
34 | | fvelrnb 6282 |
. . . . . . . . . . 11
⊢ (𝐺 Fn 𝐴 → (𝑦 ∈ ran 𝐺 ↔ ∃𝑘 ∈ 𝐴 (𝐺‘𝑘) = 𝑦)) |
35 | 33, 34 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑦 ∈ ran 𝐺 ↔ ∃𝑘 ∈ 𝐴 (𝐺‘𝑘) = 𝑦)) |
36 | 35 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑋) → (𝑦 ∈ ran 𝐺 ↔ ∃𝑘 ∈ 𝐴 (𝐺‘𝑘) = 𝑦)) |
37 | 32, 36 | mpbid 222 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑋) → ∃𝑘 ∈ 𝐴 (𝐺‘𝑘) = 𝑦) |
38 | | nnfoctbdjlem.a |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐴 ⊆ ℕ) |
39 | 38 | sselda 3636 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑘 ∈ ℕ) |
40 | 39 | peano2nnd 11075 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑘 + 1) ∈ ℕ) |
41 | 40 | 3adant3 1101 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴 ∧ (𝐺‘𝑘) = 𝑦) → (𝑘 + 1) ∈ ℕ) |
42 | 24 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐹 = (𝑛 ∈ ℕ ↦ if((𝑛 = 1 ∨ ¬ (𝑛 − 1) ∈ 𝐴), ∅, (𝐺‘(𝑛 − 1))))) |
43 | | 1red 10093 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ 𝑛 = (𝑘 + 1)) → 1 ∈
ℝ) |
44 | | 1red 10093 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 1 ∈ ℝ) |
45 | 39 | nnrpd 11908 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑘 ∈ ℝ+) |
46 | 44, 45 | ltaddrp2d 11944 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 1 < (𝑘 + 1)) |
47 | 46 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ 𝑛 = (𝑘 + 1)) → 1 < (𝑘 + 1)) |
48 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 = (𝑘 + 1) → 𝑛 = (𝑘 + 1)) |
49 | 48 | eqcomd 2657 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑛 = (𝑘 + 1) → (𝑘 + 1) = 𝑛) |
50 | 49 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ 𝑛 = (𝑘 + 1)) → (𝑘 + 1) = 𝑛) |
51 | 47, 50 | breqtrd 4711 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ 𝑛 = (𝑘 + 1)) → 1 < 𝑛) |
52 | 43, 51 | gtned 10210 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ 𝑛 = (𝑘 + 1)) → 𝑛 ≠ 1) |
53 | 52 | neneqd 2828 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ 𝑛 = (𝑘 + 1)) → ¬ 𝑛 = 1) |
54 | | oveq1 6697 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 = (𝑘 + 1) → (𝑛 − 1) = ((𝑘 + 1) − 1)) |
55 | 39 | nncnd 11074 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑘 ∈ ℂ) |
56 | | 1cnd 10094 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 1 ∈ ℂ) |
57 | 55, 56 | pncand 10431 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((𝑘 + 1) − 1) = 𝑘) |
58 | 54, 57 | sylan9eqr 2707 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ 𝑛 = (𝑘 + 1)) → (𝑛 − 1) = 𝑘) |
59 | | simplr 807 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ 𝑛 = (𝑘 + 1)) → 𝑘 ∈ 𝐴) |
60 | 58, 59 | eqeltrd 2730 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ 𝑛 = (𝑘 + 1)) → (𝑛 − 1) ∈ 𝐴) |
61 | 60 | notnotd 138 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ 𝑛 = (𝑘 + 1)) → ¬ ¬ (𝑛 − 1) ∈ 𝐴) |
62 | | ioran 510 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬
(𝑛 = 1 ∨ ¬ (𝑛 − 1) ∈ 𝐴) ↔ (¬ 𝑛 = 1 ∧ ¬ ¬ (𝑛 − 1) ∈ 𝐴)) |
63 | 53, 61, 62 | sylanbrc 699 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ 𝑛 = (𝑘 + 1)) → ¬ (𝑛 = 1 ∨ ¬ (𝑛 − 1) ∈ 𝐴)) |
64 | 63 | iffalsed 4130 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ 𝑛 = (𝑘 + 1)) → if((𝑛 = 1 ∨ ¬ (𝑛 − 1) ∈ 𝐴), ∅, (𝐺‘(𝑛 − 1))) = (𝐺‘(𝑛 − 1))) |
65 | 58 | fveq2d 6233 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ 𝑛 = (𝑘 + 1)) → (𝐺‘(𝑛 − 1)) = (𝐺‘𝑘)) |
66 | 64, 65 | eqtrd 2685 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐴) ∧ 𝑛 = (𝑘 + 1)) → if((𝑛 = 1 ∨ ¬ (𝑛 − 1) ∈ 𝐴), ∅, (𝐺‘(𝑛 − 1))) = (𝐺‘𝑘)) |
67 | 13 | ffvelrnda 6399 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐺‘𝑘) ∈ 𝑋) |
68 | 42, 66, 40, 67 | fvmptd 6327 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐹‘(𝑘 + 1)) = (𝐺‘𝑘)) |
69 | 68 | 3adant3 1101 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴 ∧ (𝐺‘𝑘) = 𝑦) → (𝐹‘(𝑘 + 1)) = (𝐺‘𝑘)) |
70 | | simp3 1083 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴 ∧ (𝐺‘𝑘) = 𝑦) → (𝐺‘𝑘) = 𝑦) |
71 | 69, 70 | eqtrd 2685 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴 ∧ (𝐺‘𝑘) = 𝑦) → (𝐹‘(𝑘 + 1)) = 𝑦) |
72 | | fveq2 6229 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = (𝑘 + 1) → (𝐹‘𝑚) = (𝐹‘(𝑘 + 1))) |
73 | 72 | eqeq1d 2653 |
. . . . . . . . . . . . 13
⊢ (𝑚 = (𝑘 + 1) → ((𝐹‘𝑚) = 𝑦 ↔ (𝐹‘(𝑘 + 1)) = 𝑦)) |
74 | 73 | rspcev 3340 |
. . . . . . . . . . . 12
⊢ (((𝑘 + 1) ∈ ℕ ∧
(𝐹‘(𝑘 + 1)) = 𝑦) → ∃𝑚 ∈ ℕ (𝐹‘𝑚) = 𝑦) |
75 | 41, 71, 74 | syl2anc 694 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴 ∧ (𝐺‘𝑘) = 𝑦) → ∃𝑚 ∈ ℕ (𝐹‘𝑚) = 𝑦) |
76 | 75 | 3exp 1283 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑘 ∈ 𝐴 → ((𝐺‘𝑘) = 𝑦 → ∃𝑚 ∈ ℕ (𝐹‘𝑚) = 𝑦))) |
77 | 76 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑋) → (𝑘 ∈ 𝐴 → ((𝐺‘𝑘) = 𝑦 → ∃𝑚 ∈ ℕ (𝐹‘𝑚) = 𝑦))) |
78 | 77 | rexlimdv 3059 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑋) → (∃𝑘 ∈ 𝐴 (𝐺‘𝑘) = 𝑦 → ∃𝑚 ∈ ℕ (𝐹‘𝑚) = 𝑦)) |
79 | 37, 78 | mpd 15 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑋) → ∃𝑚 ∈ ℕ (𝐹‘𝑚) = 𝑦) |
80 | | id 22 |
. . . . . . . . . 10
⊢ ((𝐹‘𝑚) = 𝑦 → (𝐹‘𝑚) = 𝑦) |
81 | 80 | eqcomd 2657 |
. . . . . . . . 9
⊢ ((𝐹‘𝑚) = 𝑦 → 𝑦 = (𝐹‘𝑚)) |
82 | 81 | a1i 11 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ 𝑋) ∧ 𝑚 ∈ ℕ) → ((𝐹‘𝑚) = 𝑦 → 𝑦 = (𝐹‘𝑚))) |
83 | 82 | reximdva 3046 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑋) → (∃𝑚 ∈ ℕ (𝐹‘𝑚) = 𝑦 → ∃𝑚 ∈ ℕ 𝑦 = (𝐹‘𝑚))) |
84 | 79, 83 | mpd 15 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑋) → ∃𝑚 ∈ ℕ 𝑦 = (𝐹‘𝑚)) |
85 | 84 | adantlr 751 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑋 ∪ {∅})) ∧ 𝑦 ∈ 𝑋) → ∃𝑚 ∈ ℕ 𝑦 = (𝐹‘𝑚)) |
86 | | simpll 805 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑋 ∪ {∅})) ∧ ¬ 𝑦 ∈ 𝑋) → 𝜑) |
87 | | elunnel1 3787 |
. . . . . . . 8
⊢ ((𝑦 ∈ (𝑋 ∪ {∅}) ∧ ¬ 𝑦 ∈ 𝑋) → 𝑦 ∈ {∅}) |
88 | | elsni 4227 |
. . . . . . . 8
⊢ (𝑦 ∈ {∅} → 𝑦 = ∅) |
89 | 87, 88 | syl 17 |
. . . . . . 7
⊢ ((𝑦 ∈ (𝑋 ∪ {∅}) ∧ ¬ 𝑦 ∈ 𝑋) → 𝑦 = ∅) |
90 | 89 | adantll 750 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑋 ∪ {∅})) ∧ ¬ 𝑦 ∈ 𝑋) → 𝑦 = ∅) |
91 | | 1nn 11069 |
. . . . . . . 8
⊢ 1 ∈
ℕ |
92 | 91 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 = ∅) → 1 ∈
ℕ) |
93 | 24 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹 = (𝑛 ∈ ℕ ↦ if((𝑛 = 1 ∨ ¬ (𝑛 − 1) ∈ 𝐴), ∅, (𝐺‘(𝑛 − 1))))) |
94 | 1 | orcs 408 |
. . . . . . . . . . 11
⊢ (𝑛 = 1 → if((𝑛 = 1 ∨ ¬ (𝑛 − 1) ∈ 𝐴), ∅, (𝐺‘(𝑛 − 1))) = ∅) |
95 | 94 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 = 1) → if((𝑛 = 1 ∨ ¬ (𝑛 − 1) ∈ 𝐴), ∅, (𝐺‘(𝑛 − 1))) = ∅) |
96 | 91 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → 1 ∈
ℕ) |
97 | 3 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → ∅ ∈
V) |
98 | 93, 95, 96, 97 | fvmptd 6327 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹‘1) = ∅) |
99 | 98 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 = ∅) → (𝐹‘1) = ∅) |
100 | | id 22 |
. . . . . . . . . 10
⊢ (𝑦 = ∅ → 𝑦 = ∅) |
101 | 100 | eqcomd 2657 |
. . . . . . . . 9
⊢ (𝑦 = ∅ → ∅ =
𝑦) |
102 | 101 | adantl 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 = ∅) → ∅ = 𝑦) |
103 | 99, 102 | eqtr2d 2686 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 = ∅) → 𝑦 = (𝐹‘1)) |
104 | | fveq2 6229 |
. . . . . . . . 9
⊢ (𝑚 = 1 → (𝐹‘𝑚) = (𝐹‘1)) |
105 | 104 | eqeq2d 2661 |
. . . . . . . 8
⊢ (𝑚 = 1 → (𝑦 = (𝐹‘𝑚) ↔ 𝑦 = (𝐹‘1))) |
106 | 105 | rspcev 3340 |
. . . . . . 7
⊢ ((1
∈ ℕ ∧ 𝑦 =
(𝐹‘1)) →
∃𝑚 ∈ ℕ
𝑦 = (𝐹‘𝑚)) |
107 | 92, 103, 106 | syl2anc 694 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 = ∅) → ∃𝑚 ∈ ℕ 𝑦 = (𝐹‘𝑚)) |
108 | 86, 90, 107 | syl2anc 694 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑋 ∪ {∅})) ∧ ¬ 𝑦 ∈ 𝑋) → ∃𝑚 ∈ ℕ 𝑦 = (𝐹‘𝑚)) |
109 | 85, 108 | pm2.61dan 849 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑋 ∪ {∅})) → ∃𝑚 ∈ ℕ 𝑦 = (𝐹‘𝑚)) |
110 | 109 | ralrimiva 2995 |
. . 3
⊢ (𝜑 → ∀𝑦 ∈ (𝑋 ∪ {∅})∃𝑚 ∈ ℕ 𝑦 = (𝐹‘𝑚)) |
111 | | dffo3 6414 |
. . 3
⊢ (𝐹:ℕ–onto→(𝑋 ∪ {∅}) ↔ (𝐹:ℕ⟶(𝑋 ∪ {∅}) ∧ ∀𝑦 ∈ (𝑋 ∪ {∅})∃𝑚 ∈ ℕ 𝑦 = (𝐹‘𝑚))) |
112 | 25, 110, 111 | sylanbrc 699 |
. 2
⊢ (𝜑 → 𝐹:ℕ–onto→(𝑋 ∪ {∅})) |
113 | | animorrl 507 |
. . . . 5
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ)) ∧ 𝑛 = 𝑚) → (𝑛 = 𝑚 ∨ ((𝐹‘𝑛) ∩ (𝐹‘𝑚)) = ∅)) |
114 | 2, 3 | syl6eqel 2738 |
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈ ℕ ∧ (𝑛 = 1 ∨ ¬ (𝑛 − 1) ∈ 𝐴)) → if((𝑛 = 1 ∨ ¬ (𝑛 − 1) ∈ 𝐴), ∅, (𝐺‘(𝑛 − 1))) ∈ V) |
115 | 24 | fvmpt2 6330 |
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈ ℕ ∧ if((𝑛 = 1 ∨ ¬ (𝑛 − 1) ∈ 𝐴), ∅, (𝐺‘(𝑛 − 1))) ∈ V) → (𝐹‘𝑛) = if((𝑛 = 1 ∨ ¬ (𝑛 − 1) ∈ 𝐴), ∅, (𝐺‘(𝑛 − 1)))) |
116 | 114, 115 | syldan 486 |
. . . . . . . . . . . 12
⊢ ((𝑛 ∈ ℕ ∧ (𝑛 = 1 ∨ ¬ (𝑛 − 1) ∈ 𝐴)) → (𝐹‘𝑛) = if((𝑛 = 1 ∨ ¬ (𝑛 − 1) ∈ 𝐴), ∅, (𝐺‘(𝑛 − 1)))) |
117 | 116, 2 | eqtrd 2685 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ℕ ∧ (𝑛 = 1 ∨ ¬ (𝑛 − 1) ∈ 𝐴)) → (𝐹‘𝑛) = ∅) |
118 | 117 | ineq1d 3846 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ℕ ∧ (𝑛 = 1 ∨ ¬ (𝑛 − 1) ∈ 𝐴)) → ((𝐹‘𝑛) ∩ (𝐹‘𝑚)) = (∅ ∩ (𝐹‘𝑚))) |
119 | | 0in 4002 |
. . . . . . . . . 10
⊢ (∅
∩ (𝐹‘𝑚)) = ∅ |
120 | 118, 119 | syl6eq 2701 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ℕ ∧ (𝑛 = 1 ∨ ¬ (𝑛 − 1) ∈ 𝐴)) → ((𝐹‘𝑛) ∩ (𝐹‘𝑚)) = ∅) |
121 | 120 | adantlr 751 |
. . . . . . . 8
⊢ (((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ) ∧ (𝑛 = 1 ∨ ¬ (𝑛 − 1) ∈ 𝐴)) → ((𝐹‘𝑛) ∩ (𝐹‘𝑚)) = ∅) |
122 | 121 | ad4ant24 1327 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ)) ∧ 𝑛 ≠ 𝑚) ∧ (𝑛 = 1 ∨ ¬ (𝑛 − 1) ∈ 𝐴)) → ((𝐹‘𝑛) ∩ (𝐹‘𝑚)) = ∅) |
123 | 24 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝑚 ∈ ℕ ∧ (𝑚 = 1 ∨ ¬ (𝑚 − 1) ∈ 𝐴)) → 𝐹 = (𝑛 ∈ ℕ ↦ if((𝑛 = 1 ∨ ¬ (𝑛 − 1) ∈ 𝐴), ∅, (𝐺‘(𝑛 − 1))))) |
124 | | eqeq1 2655 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 𝑚 → (𝑛 = 1 ↔ 𝑚 = 1)) |
125 | | oveq1 6697 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = 𝑚 → (𝑛 − 1) = (𝑚 − 1)) |
126 | 125 | eleq1d 2715 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 𝑚 → ((𝑛 − 1) ∈ 𝐴 ↔ (𝑚 − 1) ∈ 𝐴)) |
127 | 126 | notbid 307 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 𝑚 → (¬ (𝑛 − 1) ∈ 𝐴 ↔ ¬ (𝑚 − 1) ∈ 𝐴)) |
128 | 124, 127 | orbi12d 746 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 𝑚 → ((𝑛 = 1 ∨ ¬ (𝑛 − 1) ∈ 𝐴) ↔ (𝑚 = 1 ∨ ¬ (𝑚 − 1) ∈ 𝐴))) |
129 | 125 | fveq2d 6233 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 𝑚 → (𝐺‘(𝑛 − 1)) = (𝐺‘(𝑚 − 1))) |
130 | 128, 129 | ifbieq2d 4144 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = 𝑚 → if((𝑛 = 1 ∨ ¬ (𝑛 − 1) ∈ 𝐴), ∅, (𝐺‘(𝑛 − 1))) = if((𝑚 = 1 ∨ ¬ (𝑚 − 1) ∈ 𝐴), ∅, (𝐺‘(𝑚 − 1)))) |
131 | 130 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ (((𝑚 ∈ ℕ ∧ (𝑚 = 1 ∨ ¬ (𝑚 − 1) ∈ 𝐴)) ∧ 𝑛 = 𝑚) → if((𝑛 = 1 ∨ ¬ (𝑛 − 1) ∈ 𝐴), ∅, (𝐺‘(𝑛 − 1))) = if((𝑚 = 1 ∨ ¬ (𝑚 − 1) ∈ 𝐴), ∅, (𝐺‘(𝑚 − 1)))) |
132 | | simpl 472 |
. . . . . . . . . . . . . 14
⊢ ((𝑚 ∈ ℕ ∧ (𝑚 = 1 ∨ ¬ (𝑚 − 1) ∈ 𝐴)) → 𝑚 ∈ ℕ) |
133 | | iftrue 4125 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑚 = 1 ∨ ¬ (𝑚 − 1) ∈ 𝐴) → if((𝑚 = 1 ∨ ¬ (𝑚 − 1) ∈ 𝐴), ∅, (𝐺‘(𝑚 − 1))) = ∅) |
134 | 133, 3 | syl6eqel 2738 |
. . . . . . . . . . . . . . 15
⊢ ((𝑚 = 1 ∨ ¬ (𝑚 − 1) ∈ 𝐴) → if((𝑚 = 1 ∨ ¬ (𝑚 − 1) ∈ 𝐴), ∅, (𝐺‘(𝑚 − 1))) ∈ V) |
135 | 134 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝑚 ∈ ℕ ∧ (𝑚 = 1 ∨ ¬ (𝑚 − 1) ∈ 𝐴)) → if((𝑚 = 1 ∨ ¬ (𝑚 − 1) ∈ 𝐴), ∅, (𝐺‘(𝑚 − 1))) ∈ V) |
136 | 123, 131,
132, 135 | fvmptd 6327 |
. . . . . . . . . . . . 13
⊢ ((𝑚 ∈ ℕ ∧ (𝑚 = 1 ∨ ¬ (𝑚 − 1) ∈ 𝐴)) → (𝐹‘𝑚) = if((𝑚 = 1 ∨ ¬ (𝑚 − 1) ∈ 𝐴), ∅, (𝐺‘(𝑚 − 1)))) |
137 | 133 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝑚 ∈ ℕ ∧ (𝑚 = 1 ∨ ¬ (𝑚 − 1) ∈ 𝐴)) → if((𝑚 = 1 ∨ ¬ (𝑚 − 1) ∈ 𝐴), ∅, (𝐺‘(𝑚 − 1))) = ∅) |
138 | 136, 137 | eqtrd 2685 |
. . . . . . . . . . . 12
⊢ ((𝑚 ∈ ℕ ∧ (𝑚 = 1 ∨ ¬ (𝑚 − 1) ∈ 𝐴)) → (𝐹‘𝑚) = ∅) |
139 | 138 | ineq2d 3847 |
. . . . . . . . . . 11
⊢ ((𝑚 ∈ ℕ ∧ (𝑚 = 1 ∨ ¬ (𝑚 − 1) ∈ 𝐴)) → ((𝐹‘𝑛) ∩ (𝐹‘𝑚)) = ((𝐹‘𝑛) ∩ ∅)) |
140 | | in0 4001 |
. . . . . . . . . . 11
⊢ ((𝐹‘𝑛) ∩ ∅) = ∅ |
141 | 139, 140 | syl6eq 2701 |
. . . . . . . . . 10
⊢ ((𝑚 ∈ ℕ ∧ (𝑚 = 1 ∨ ¬ (𝑚 − 1) ∈ 𝐴)) → ((𝐹‘𝑛) ∩ (𝐹‘𝑚)) = ∅) |
142 | 141 | adantll 750 |
. . . . . . . . 9
⊢ (((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ) ∧ (𝑚 = 1 ∨ ¬ (𝑚 − 1) ∈ 𝐴)) → ((𝐹‘𝑛) ∩ (𝐹‘𝑚)) = ∅) |
143 | 142 | ad5ant25 1342 |
. . . . . . . 8
⊢
(((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ)) ∧ 𝑛 ≠ 𝑚) ∧ ¬ (𝑛 = 1 ∨ ¬ (𝑛 − 1) ∈ 𝐴)) ∧ (𝑚 = 1 ∨ ¬ (𝑚 − 1) ∈ 𝐴)) → ((𝐹‘𝑛) ∩ (𝐹‘𝑚)) = ∅) |
144 | | fvex 6239 |
. . . . . . . . . . . . . . . 16
⊢ (𝐺‘(𝑛 − 1)) ∈ V |
145 | 3, 144 | ifex 4189 |
. . . . . . . . . . . . . . 15
⊢ if((𝑛 = 1 ∨ ¬ (𝑛 − 1) ∈ 𝐴), ∅, (𝐺‘(𝑛 − 1))) ∈ V |
146 | 145, 115 | mpan2 707 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℕ → (𝐹‘𝑛) = if((𝑛 = 1 ∨ ¬ (𝑛 − 1) ∈ 𝐴), ∅, (𝐺‘(𝑛 − 1)))) |
147 | 146, 9 | sylan9eq 2705 |
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈ ℕ ∧ ¬
(𝑛 = 1 ∨ ¬ (𝑛 − 1) ∈ 𝐴)) → (𝐹‘𝑛) = (𝐺‘(𝑛 − 1))) |
148 | 147 | adantlr 751 |
. . . . . . . . . . . 12
⊢ (((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ) ∧ ¬
(𝑛 = 1 ∨ ¬ (𝑛 − 1) ∈ 𝐴)) → (𝐹‘𝑛) = (𝐺‘(𝑛 − 1))) |
149 | 148 | 3adant3 1101 |
. . . . . . . . . . 11
⊢ (((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ) ∧ ¬
(𝑛 = 1 ∨ ¬ (𝑛 − 1) ∈ 𝐴) ∧ ¬ (𝑚 = 1 ∨ ¬ (𝑚 − 1) ∈ 𝐴)) → (𝐹‘𝑛) = (𝐺‘(𝑛 − 1))) |
150 | 24 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝑚 ∈ ℕ ∧ ¬
(𝑚 = 1 ∨ ¬ (𝑚 − 1) ∈ 𝐴)) → 𝐹 = (𝑛 ∈ ℕ ↦ if((𝑛 = 1 ∨ ¬ (𝑛 − 1) ∈ 𝐴), ∅, (𝐺‘(𝑛 − 1))))) |
151 | 130 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝑚 ∈ ℕ ∧ ¬
(𝑚 = 1 ∨ ¬ (𝑚 − 1) ∈ 𝐴)) ∧ 𝑛 = 𝑚) → if((𝑛 = 1 ∨ ¬ (𝑛 − 1) ∈ 𝐴), ∅, (𝐺‘(𝑛 − 1))) = if((𝑚 = 1 ∨ ¬ (𝑚 − 1) ∈ 𝐴), ∅, (𝐺‘(𝑚 − 1)))) |
152 | | iffalse 4128 |
. . . . . . . . . . . . . . . 16
⊢ (¬
(𝑚 = 1 ∨ ¬ (𝑚 − 1) ∈ 𝐴) → if((𝑚 = 1 ∨ ¬ (𝑚 − 1) ∈ 𝐴), ∅, (𝐺‘(𝑚 − 1))) = (𝐺‘(𝑚 − 1))) |
153 | 152 | ad2antlr 763 |
. . . . . . . . . . . . . . 15
⊢ (((𝑚 ∈ ℕ ∧ ¬
(𝑚 = 1 ∨ ¬ (𝑚 − 1) ∈ 𝐴)) ∧ 𝑛 = 𝑚) → if((𝑚 = 1 ∨ ¬ (𝑚 − 1) ∈ 𝐴), ∅, (𝐺‘(𝑚 − 1))) = (𝐺‘(𝑚 − 1))) |
154 | 151, 153 | eqtrd 2685 |
. . . . . . . . . . . . . 14
⊢ (((𝑚 ∈ ℕ ∧ ¬
(𝑚 = 1 ∨ ¬ (𝑚 − 1) ∈ 𝐴)) ∧ 𝑛 = 𝑚) → if((𝑛 = 1 ∨ ¬ (𝑛 − 1) ∈ 𝐴), ∅, (𝐺‘(𝑛 − 1))) = (𝐺‘(𝑚 − 1))) |
155 | | simpl 472 |
. . . . . . . . . . . . . 14
⊢ ((𝑚 ∈ ℕ ∧ ¬
(𝑚 = 1 ∨ ¬ (𝑚 − 1) ∈ 𝐴)) → 𝑚 ∈ ℕ) |
156 | | fvexd 6241 |
. . . . . . . . . . . . . 14
⊢ ((𝑚 ∈ ℕ ∧ ¬
(𝑚 = 1 ∨ ¬ (𝑚 − 1) ∈ 𝐴)) → (𝐺‘(𝑚 − 1)) ∈ V) |
157 | 150, 154,
155, 156 | fvmptd 6327 |
. . . . . . . . . . . . 13
⊢ ((𝑚 ∈ ℕ ∧ ¬
(𝑚 = 1 ∨ ¬ (𝑚 − 1) ∈ 𝐴)) → (𝐹‘𝑚) = (𝐺‘(𝑚 − 1))) |
158 | 157 | adantll 750 |
. . . . . . . . . . . 12
⊢ (((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ) ∧ ¬
(𝑚 = 1 ∨ ¬ (𝑚 − 1) ∈ 𝐴)) → (𝐹‘𝑚) = (𝐺‘(𝑚 − 1))) |
159 | 158 | 3adant2 1100 |
. . . . . . . . . . 11
⊢ (((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ) ∧ ¬
(𝑛 = 1 ∨ ¬ (𝑛 − 1) ∈ 𝐴) ∧ ¬ (𝑚 = 1 ∨ ¬ (𝑚 − 1) ∈ 𝐴)) → (𝐹‘𝑚) = (𝐺‘(𝑚 − 1))) |
160 | 149, 159 | ineq12d 3848 |
. . . . . . . . . 10
⊢ (((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ) ∧ ¬
(𝑛 = 1 ∨ ¬ (𝑛 − 1) ∈ 𝐴) ∧ ¬ (𝑚 = 1 ∨ ¬ (𝑚 − 1) ∈ 𝐴)) → ((𝐹‘𝑛) ∩ (𝐹‘𝑚)) = ((𝐺‘(𝑛 − 1)) ∩ (𝐺‘(𝑚 − 1)))) |
161 | 160 | ad5ant245 1344 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ)) ∧ 𝑛 ≠ 𝑚) ∧ ¬ (𝑛 = 1 ∨ ¬ (𝑛 − 1) ∈ 𝐴)) ∧ ¬ (𝑚 = 1 ∨ ¬ (𝑚 − 1) ∈ 𝐴)) → ((𝐹‘𝑛) ∩ (𝐹‘𝑚)) = ((𝐺‘(𝑛 − 1)) ∩ (𝐺‘(𝑚 − 1)))) |
162 | 16 | ad2antlr 763 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ)) ∧ 𝑛 ≠ 𝑚) ∧ ¬ (𝑛 = 1 ∨ ¬ (𝑛 − 1) ∈ 𝐴)) ∧ ¬ (𝑚 = 1 ∨ ¬ (𝑚 − 1) ∈ 𝐴)) → (𝑛 − 1) ∈ 𝐴) |
163 | | pm2.46 412 |
. . . . . . . . . . . . . . 15
⊢ (¬
(𝑚 = 1 ∨ ¬ (𝑚 − 1) ∈ 𝐴) → ¬ ¬ (𝑚 − 1) ∈ 𝐴) |
164 | 163 | notnotrd 128 |
. . . . . . . . . . . . . 14
⊢ (¬
(𝑚 = 1 ∨ ¬ (𝑚 − 1) ∈ 𝐴) → (𝑚 − 1) ∈ 𝐴) |
165 | 164 | adantl 481 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ)) ∧ 𝑛 ≠ 𝑚) ∧ ¬ (𝑛 = 1 ∨ ¬ (𝑛 − 1) ∈ 𝐴)) ∧ ¬ (𝑚 = 1 ∨ ¬ (𝑚 − 1) ∈ 𝐴)) → (𝑚 − 1) ∈ 𝐴) |
166 | | f1of1 6174 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐺:𝐴–1-1-onto→𝑋 → 𝐺:𝐴–1-1→𝑋) |
167 | 11, 166 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐺:𝐴–1-1→𝑋) |
168 | | dff14a 6567 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐺:𝐴–1-1→𝑋 ↔ (𝐺:𝐴⟶𝑋 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → (𝐺‘𝑥) ≠ (𝐺‘𝑦)))) |
169 | 167, 168 | sylib 208 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐺:𝐴⟶𝑋 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → (𝐺‘𝑥) ≠ (𝐺‘𝑦)))) |
170 | 169 | simprd 478 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → (𝐺‘𝑥) ≠ (𝐺‘𝑦))) |
171 | 170 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ)) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → (𝐺‘𝑥) ≠ (𝐺‘𝑦))) |
172 | 171 | ad3antrrr 766 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ)) ∧ 𝑛 ≠ 𝑚) ∧ ¬ (𝑛 = 1 ∨ ¬ (𝑛 − 1) ∈ 𝐴)) ∧ ¬ (𝑚 = 1 ∨ ¬ (𝑚 − 1) ∈ 𝐴)) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → (𝐺‘𝑥) ≠ (𝐺‘𝑦))) |
173 | 162, 165,
172 | jca31 556 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ)) ∧ 𝑛 ≠ 𝑚) ∧ ¬ (𝑛 = 1 ∨ ¬ (𝑛 − 1) ∈ 𝐴)) ∧ ¬ (𝑚 = 1 ∨ ¬ (𝑚 − 1) ∈ 𝐴)) → (((𝑛 − 1) ∈ 𝐴 ∧ (𝑚 − 1) ∈ 𝐴) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → (𝐺‘𝑥) ≠ (𝐺‘𝑦)))) |
174 | | nncn 11066 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℂ) |
175 | 174 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ) → 𝑛 ∈
ℂ) |
176 | 175 | ad2antlr 763 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ)) ∧ 𝑛 ≠ 𝑚) → 𝑛 ∈ ℂ) |
177 | | nncn 11066 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 ∈ ℕ → 𝑚 ∈
ℂ) |
178 | 177 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ) → 𝑚 ∈
ℂ) |
179 | 178 | ad2antlr 763 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ)) ∧ 𝑛 ≠ 𝑚) → 𝑚 ∈ ℂ) |
180 | | 1cnd 10094 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ)) ∧ 𝑛 ≠ 𝑚) → 1 ∈ ℂ) |
181 | | simpr 476 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ)) ∧ 𝑛 ≠ 𝑚) → 𝑛 ≠ 𝑚) |
182 | 176, 179,
180, 181 | subneintr2d 10476 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ)) ∧ 𝑛 ≠ 𝑚) → (𝑛 − 1) ≠ (𝑚 − 1)) |
183 | 182 | ad2antrr 762 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ)) ∧ 𝑛 ≠ 𝑚) ∧ ¬ (𝑛 = 1 ∨ ¬ (𝑛 − 1) ∈ 𝐴)) ∧ ¬ (𝑚 = 1 ∨ ¬ (𝑚 − 1) ∈ 𝐴)) → (𝑛 − 1) ≠ (𝑚 − 1)) |
184 | | neeq1 2885 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = (𝑛 − 1) → (𝑥 ≠ 𝑦 ↔ (𝑛 − 1) ≠ 𝑦)) |
185 | | fveq2 6229 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = (𝑛 − 1) → (𝐺‘𝑥) = (𝐺‘(𝑛 − 1))) |
186 | 185 | neeq1d 2882 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = (𝑛 − 1) → ((𝐺‘𝑥) ≠ (𝐺‘𝑦) ↔ (𝐺‘(𝑛 − 1)) ≠ (𝐺‘𝑦))) |
187 | 184, 186 | imbi12d 333 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (𝑛 − 1) → ((𝑥 ≠ 𝑦 → (𝐺‘𝑥) ≠ (𝐺‘𝑦)) ↔ ((𝑛 − 1) ≠ 𝑦 → (𝐺‘(𝑛 − 1)) ≠ (𝐺‘𝑦)))) |
188 | | neeq2 2886 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = (𝑚 − 1) → ((𝑛 − 1) ≠ 𝑦 ↔ (𝑛 − 1) ≠ (𝑚 − 1))) |
189 | | fveq2 6229 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = (𝑚 − 1) → (𝐺‘𝑦) = (𝐺‘(𝑚 − 1))) |
190 | 189 | neeq2d 2883 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = (𝑚 − 1) → ((𝐺‘(𝑛 − 1)) ≠ (𝐺‘𝑦) ↔ (𝐺‘(𝑛 − 1)) ≠ (𝐺‘(𝑚 − 1)))) |
191 | 188, 190 | imbi12d 333 |
. . . . . . . . . . . . 13
⊢ (𝑦 = (𝑚 − 1) → (((𝑛 − 1) ≠ 𝑦 → (𝐺‘(𝑛 − 1)) ≠ (𝐺‘𝑦)) ↔ ((𝑛 − 1) ≠ (𝑚 − 1) → (𝐺‘(𝑛 − 1)) ≠ (𝐺‘(𝑚 − 1))))) |
192 | 187, 191 | rspc2va 3354 |
. . . . . . . . . . . 12
⊢ ((((𝑛 − 1) ∈ 𝐴 ∧ (𝑚 − 1) ∈ 𝐴) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → (𝐺‘𝑥) ≠ (𝐺‘𝑦))) → ((𝑛 − 1) ≠ (𝑚 − 1) → (𝐺‘(𝑛 − 1)) ≠ (𝐺‘(𝑚 − 1)))) |
193 | 173, 183,
192 | sylc 65 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ)) ∧ 𝑛 ≠ 𝑚) ∧ ¬ (𝑛 = 1 ∨ ¬ (𝑛 − 1) ∈ 𝐴)) ∧ ¬ (𝑚 = 1 ∨ ¬ (𝑚 − 1) ∈ 𝐴)) → (𝐺‘(𝑛 − 1)) ≠ (𝐺‘(𝑚 − 1))) |
194 | 193 | neneqd 2828 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ)) ∧ 𝑛 ≠ 𝑚) ∧ ¬ (𝑛 = 1 ∨ ¬ (𝑛 − 1) ∈ 𝐴)) ∧ ¬ (𝑚 = 1 ∨ ¬ (𝑚 − 1) ∈ 𝐴)) → ¬ (𝐺‘(𝑛 − 1)) = (𝐺‘(𝑚 − 1))) |
195 | 18 | ad4ant13 1315 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ)) ∧ ¬ (𝑛 = 1 ∨ ¬ (𝑛 − 1) ∈ 𝐴)) ∧ ¬ (𝑚 = 1 ∨ ¬ (𝑚 − 1) ∈ 𝐴)) → (𝐺‘(𝑛 − 1)) ∈ 𝑋) |
196 | 13 | ffvelrnda 6399 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑚 − 1) ∈ 𝐴) → (𝐺‘(𝑚 − 1)) ∈ 𝑋) |
197 | 164, 196 | sylan2 490 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ¬ (𝑚 = 1 ∨ ¬ (𝑚 − 1) ∈ 𝐴)) → (𝐺‘(𝑚 − 1)) ∈ 𝑋) |
198 | 197 | ad4ant14 1317 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ)) ∧ ¬ (𝑛 = 1 ∨ ¬ (𝑛 − 1) ∈ 𝐴)) ∧ ¬ (𝑚 = 1 ∨ ¬ (𝑚 − 1) ∈ 𝐴)) → (𝐺‘(𝑚 − 1)) ∈ 𝑋) |
199 | | nnfoctbdjlem.dj |
. . . . . . . . . . . . . 14
⊢ (𝜑 → Disj 𝑦 ∈ 𝑋 𝑦) |
200 | | id 22 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑧 → 𝑦 = 𝑧) |
201 | 200 | disjor 4666 |
. . . . . . . . . . . . . 14
⊢
(Disj 𝑦
∈ 𝑋 𝑦 ↔ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑦 = 𝑧 ∨ (𝑦 ∩ 𝑧) = ∅)) |
202 | 199, 201 | sylib 208 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑦 = 𝑧 ∨ (𝑦 ∩ 𝑧) = ∅)) |
203 | 202 | ad3antrrr 766 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ)) ∧ ¬ (𝑛 = 1 ∨ ¬ (𝑛 − 1) ∈ 𝐴)) ∧ ¬ (𝑚 = 1 ∨ ¬ (𝑚 − 1) ∈ 𝐴)) → ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑦 = 𝑧 ∨ (𝑦 ∩ 𝑧) = ∅)) |
204 | | eqeq1 2655 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = (𝐺‘(𝑛 − 1)) → (𝑦 = 𝑧 ↔ (𝐺‘(𝑛 − 1)) = 𝑧)) |
205 | | ineq1 3840 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = (𝐺‘(𝑛 − 1)) → (𝑦 ∩ 𝑧) = ((𝐺‘(𝑛 − 1)) ∩ 𝑧)) |
206 | 205 | eqeq1d 2653 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = (𝐺‘(𝑛 − 1)) → ((𝑦 ∩ 𝑧) = ∅ ↔ ((𝐺‘(𝑛 − 1)) ∩ 𝑧) = ∅)) |
207 | 204, 206 | orbi12d 746 |
. . . . . . . . . . . . 13
⊢ (𝑦 = (𝐺‘(𝑛 − 1)) → ((𝑦 = 𝑧 ∨ (𝑦 ∩ 𝑧) = ∅) ↔ ((𝐺‘(𝑛 − 1)) = 𝑧 ∨ ((𝐺‘(𝑛 − 1)) ∩ 𝑧) = ∅))) |
208 | | eqeq2 2662 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = (𝐺‘(𝑚 − 1)) → ((𝐺‘(𝑛 − 1)) = 𝑧 ↔ (𝐺‘(𝑛 − 1)) = (𝐺‘(𝑚 − 1)))) |
209 | | ineq2 3841 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = (𝐺‘(𝑚 − 1)) → ((𝐺‘(𝑛 − 1)) ∩ 𝑧) = ((𝐺‘(𝑛 − 1)) ∩ (𝐺‘(𝑚 − 1)))) |
210 | 209 | eqeq1d 2653 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = (𝐺‘(𝑚 − 1)) → (((𝐺‘(𝑛 − 1)) ∩ 𝑧) = ∅ ↔ ((𝐺‘(𝑛 − 1)) ∩ (𝐺‘(𝑚 − 1))) = ∅)) |
211 | 208, 210 | orbi12d 746 |
. . . . . . . . . . . . 13
⊢ (𝑧 = (𝐺‘(𝑚 − 1)) → (((𝐺‘(𝑛 − 1)) = 𝑧 ∨ ((𝐺‘(𝑛 − 1)) ∩ 𝑧) = ∅) ↔ ((𝐺‘(𝑛 − 1)) = (𝐺‘(𝑚 − 1)) ∨ ((𝐺‘(𝑛 − 1)) ∩ (𝐺‘(𝑚 − 1))) = ∅))) |
212 | 207, 211 | rspc2va 3354 |
. . . . . . . . . . . 12
⊢ ((((𝐺‘(𝑛 − 1)) ∈ 𝑋 ∧ (𝐺‘(𝑚 − 1)) ∈ 𝑋) ∧ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑦 = 𝑧 ∨ (𝑦 ∩ 𝑧) = ∅)) → ((𝐺‘(𝑛 − 1)) = (𝐺‘(𝑚 − 1)) ∨ ((𝐺‘(𝑛 − 1)) ∩ (𝐺‘(𝑚 − 1))) = ∅)) |
213 | 195, 198,
203, 212 | syl21anc 1365 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ)) ∧ ¬ (𝑛 = 1 ∨ ¬ (𝑛 − 1) ∈ 𝐴)) ∧ ¬ (𝑚 = 1 ∨ ¬ (𝑚 − 1) ∈ 𝐴)) → ((𝐺‘(𝑛 − 1)) = (𝐺‘(𝑚 − 1)) ∨ ((𝐺‘(𝑛 − 1)) ∩ (𝐺‘(𝑚 − 1))) = ∅)) |
214 | 213 | adantllr 755 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ)) ∧ 𝑛 ≠ 𝑚) ∧ ¬ (𝑛 = 1 ∨ ¬ (𝑛 − 1) ∈ 𝐴)) ∧ ¬ (𝑚 = 1 ∨ ¬ (𝑚 − 1) ∈ 𝐴)) → ((𝐺‘(𝑛 − 1)) = (𝐺‘(𝑚 − 1)) ∨ ((𝐺‘(𝑛 − 1)) ∩ (𝐺‘(𝑚 − 1))) = ∅)) |
215 | | orel1 396 |
. . . . . . . . . 10
⊢ (¬
(𝐺‘(𝑛 − 1)) = (𝐺‘(𝑚 − 1)) → (((𝐺‘(𝑛 − 1)) = (𝐺‘(𝑚 − 1)) ∨ ((𝐺‘(𝑛 − 1)) ∩ (𝐺‘(𝑚 − 1))) = ∅) → ((𝐺‘(𝑛 − 1)) ∩ (𝐺‘(𝑚 − 1))) = ∅)) |
216 | 194, 214,
215 | sylc 65 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ)) ∧ 𝑛 ≠ 𝑚) ∧ ¬ (𝑛 = 1 ∨ ¬ (𝑛 − 1) ∈ 𝐴)) ∧ ¬ (𝑚 = 1 ∨ ¬ (𝑚 − 1) ∈ 𝐴)) → ((𝐺‘(𝑛 − 1)) ∩ (𝐺‘(𝑚 − 1))) = ∅) |
217 | 161, 216 | eqtrd 2685 |
. . . . . . . 8
⊢
(((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ)) ∧ 𝑛 ≠ 𝑚) ∧ ¬ (𝑛 = 1 ∨ ¬ (𝑛 − 1) ∈ 𝐴)) ∧ ¬ (𝑚 = 1 ∨ ¬ (𝑚 − 1) ∈ 𝐴)) → ((𝐹‘𝑛) ∩ (𝐹‘𝑚)) = ∅) |
218 | 143, 217 | pm2.61dan 849 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ)) ∧ 𝑛 ≠ 𝑚) ∧ ¬ (𝑛 = 1 ∨ ¬ (𝑛 − 1) ∈ 𝐴)) → ((𝐹‘𝑛) ∩ (𝐹‘𝑚)) = ∅) |
219 | 122, 218 | pm2.61dan 849 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ)) ∧ 𝑛 ≠ 𝑚) → ((𝐹‘𝑛) ∩ (𝐹‘𝑚)) = ∅) |
220 | 219 | olcd 407 |
. . . . 5
⊢ (((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ)) ∧ 𝑛 ≠ 𝑚) → (𝑛 = 𝑚 ∨ ((𝐹‘𝑛) ∩ (𝐹‘𝑚)) = ∅)) |
221 | 113, 220 | pm2.61dane 2910 |
. . . 4
⊢ ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ)) → (𝑛 = 𝑚 ∨ ((𝐹‘𝑛) ∩ (𝐹‘𝑚)) = ∅)) |
222 | 221 | ralrimivva 3000 |
. . 3
⊢ (𝜑 → ∀𝑛 ∈ ℕ ∀𝑚 ∈ ℕ (𝑛 = 𝑚 ∨ ((𝐹‘𝑛) ∩ (𝐹‘𝑚)) = ∅)) |
223 | | fveq2 6229 |
. . . 4
⊢ (𝑛 = 𝑚 → (𝐹‘𝑛) = (𝐹‘𝑚)) |
224 | 223 | disjor 4666 |
. . 3
⊢
(Disj 𝑛
∈ ℕ (𝐹‘𝑛) ↔ ∀𝑛 ∈ ℕ ∀𝑚 ∈ ℕ (𝑛 = 𝑚 ∨ ((𝐹‘𝑛) ∩ (𝐹‘𝑚)) = ∅)) |
225 | 222, 224 | sylibr 224 |
. 2
⊢ (𝜑 → Disj 𝑛 ∈ ℕ (𝐹‘𝑛)) |
226 | | nnex 11064 |
. . . . 5
⊢ ℕ
∈ V |
227 | 226 | mptex 6527 |
. . . 4
⊢ (𝑛 ∈ ℕ ↦
if((𝑛 = 1 ∨ ¬ (𝑛 − 1) ∈ 𝐴), ∅, (𝐺‘(𝑛 − 1)))) ∈ V |
228 | 24, 227 | eqeltri 2726 |
. . 3
⊢ 𝐹 ∈ V |
229 | | foeq1 6149 |
. . . 4
⊢ (𝑓 = 𝐹 → (𝑓:ℕ–onto→(𝑋 ∪ {∅}) ↔ 𝐹:ℕ–onto→(𝑋 ∪ {∅}))) |
230 | | simpl 472 |
. . . . . 6
⊢ ((𝑓 = 𝐹 ∧ 𝑛 ∈ ℕ) → 𝑓 = 𝐹) |
231 | 230 | fveq1d 6231 |
. . . . 5
⊢ ((𝑓 = 𝐹 ∧ 𝑛 ∈ ℕ) → (𝑓‘𝑛) = (𝐹‘𝑛)) |
232 | 231 | disjeq2dv 4657 |
. . . 4
⊢ (𝑓 = 𝐹 → (Disj 𝑛 ∈ ℕ (𝑓‘𝑛) ↔ Disj 𝑛 ∈ ℕ (𝐹‘𝑛))) |
233 | 229, 232 | anbi12d 747 |
. . 3
⊢ (𝑓 = 𝐹 → ((𝑓:ℕ–onto→(𝑋 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑓‘𝑛)) ↔ (𝐹:ℕ–onto→(𝑋 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝐹‘𝑛)))) |
234 | 228, 233 | spcev 3331 |
. 2
⊢ ((𝐹:ℕ–onto→(𝑋 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝐹‘𝑛)) → ∃𝑓(𝑓:ℕ–onto→(𝑋 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑓‘𝑛))) |
235 | 112, 225,
234 | syl2anc 694 |
1
⊢ (𝜑 → ∃𝑓(𝑓:ℕ–onto→(𝑋 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑓‘𝑛))) |