Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nnfoctbdj Structured version   Visualization version   GIF version

Theorem nnfoctbdj 41195
 Description: There exists a mapping from ℕ onto any (nonempty) countable set of disjoint sets, such that elements in the range of the map are disjoint. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
nnfoctbdj.ctb (𝜑𝑋 ≼ ω)
nnfoctbdj.n0 (𝜑𝑋 ≠ ∅)
nnfoctbdj.dj (𝜑Disj 𝑦𝑋 𝑦)
Assertion
Ref Expression
nnfoctbdj (𝜑 → ∃𝑓(𝑓:ℕ–onto→(𝑋 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑓𝑛)))
Distinct variable groups:   𝑓,𝑋,𝑛   𝑦,𝑋,𝑛   𝜑,𝑛,𝑦
Allowed substitution hint:   𝜑(𝑓)

Proof of Theorem nnfoctbdj
Dummy variables 𝑔 𝑥 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnfoctbdj.ctb . . 3 (𝜑𝑋 ≼ ω)
2 nnfoctbdj.n0 . . 3 (𝜑𝑋 ≠ ∅)
3 nnfoctb 39731 . . 3 ((𝑋 ≼ ω ∧ 𝑋 ≠ ∅) → ∃𝑔 𝑔:ℕ–onto𝑋)
41, 2, 3syl2anc 696 . 2 (𝜑 → ∃𝑔 𝑔:ℕ–onto𝑋)
5 fofn 6280 . . . . . . 7 (𝑔:ℕ–onto𝑋𝑔 Fn ℕ)
65adantl 473 . . . . . 6 ((𝜑𝑔:ℕ–onto𝑋) → 𝑔 Fn ℕ)
7 nnex 11239 . . . . . . 7 ℕ ∈ V
87a1i 11 . . . . . 6 ((𝜑𝑔:ℕ–onto𝑋) → ℕ ∈ V)
9 ltwenn 12976 . . . . . . 7 < We ℕ
109a1i 11 . . . . . 6 ((𝜑𝑔:ℕ–onto𝑋) → < We ℕ)
116, 8, 10wessf1orn 39890 . . . . 5 ((𝜑𝑔:ℕ–onto𝑋) → ∃𝑥 ∈ 𝒫 ℕ(𝑔𝑥):𝑥1-1-onto→ran 𝑔)
12 elpwi 4313 . . . . . . . . 9 (𝑥 ∈ 𝒫 ℕ → 𝑥 ⊆ ℕ)
13123ad2ant2 1129 . . . . . . . 8 (((𝜑𝑔:ℕ–onto𝑋) ∧ 𝑥 ∈ 𝒫 ℕ ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → 𝑥 ⊆ ℕ)
14 simpr 479 . . . . . . . . . . 11 ((𝑔:ℕ–onto𝑋 ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → (𝑔𝑥):𝑥1-1-onto→ran 𝑔)
15 forn 6281 . . . . . . . . . . . . 13 (𝑔:ℕ–onto𝑋 → ran 𝑔 = 𝑋)
1615adantr 472 . . . . . . . . . . . 12 ((𝑔:ℕ–onto𝑋 ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → ran 𝑔 = 𝑋)
1716f1oeq3d 6297 . . . . . . . . . . 11 ((𝑔:ℕ–onto𝑋 ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → ((𝑔𝑥):𝑥1-1-onto→ran 𝑔 ↔ (𝑔𝑥):𝑥1-1-onto𝑋))
1814, 17mpbid 222 . . . . . . . . . 10 ((𝑔:ℕ–onto𝑋 ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → (𝑔𝑥):𝑥1-1-onto𝑋)
1918adantll 752 . . . . . . . . 9 (((𝜑𝑔:ℕ–onto𝑋) ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → (𝑔𝑥):𝑥1-1-onto𝑋)
20193adant2 1126 . . . . . . . 8 (((𝜑𝑔:ℕ–onto𝑋) ∧ 𝑥 ∈ 𝒫 ℕ ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → (𝑔𝑥):𝑥1-1-onto𝑋)
21 nnfoctbdj.dj . . . . . . . . . 10 (𝜑Disj 𝑦𝑋 𝑦)
2221adantr 472 . . . . . . . . 9 ((𝜑𝑔:ℕ–onto𝑋) → Disj 𝑦𝑋 𝑦)
23223ad2ant1 1128 . . . . . . . 8 (((𝜑𝑔:ℕ–onto𝑋) ∧ 𝑥 ∈ 𝒫 ℕ ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → Disj 𝑦𝑋 𝑦)
24 eqeq1 2765 . . . . . . . . . . 11 (𝑚 = 𝑛 → (𝑚 = 1 ↔ 𝑛 = 1))
25 oveq1 6822 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → (𝑚 − 1) = (𝑛 − 1))
2625eleq1d 2825 . . . . . . . . . . . 12 (𝑚 = 𝑛 → ((𝑚 − 1) ∈ 𝑥 ↔ (𝑛 − 1) ∈ 𝑥))
2726notbid 307 . . . . . . . . . . 11 (𝑚 = 𝑛 → (¬ (𝑚 − 1) ∈ 𝑥 ↔ ¬ (𝑛 − 1) ∈ 𝑥))
2824, 27orbi12d 748 . . . . . . . . . 10 (𝑚 = 𝑛 → ((𝑚 = 1 ∨ ¬ (𝑚 − 1) ∈ 𝑥) ↔ (𝑛 = 1 ∨ ¬ (𝑛 − 1) ∈ 𝑥)))
2925fveq2d 6358 . . . . . . . . . 10 (𝑚 = 𝑛 → ((𝑔𝑥)‘(𝑚 − 1)) = ((𝑔𝑥)‘(𝑛 − 1)))
3028, 29ifbieq2d 4256 . . . . . . . . 9 (𝑚 = 𝑛 → if((𝑚 = 1 ∨ ¬ (𝑚 − 1) ∈ 𝑥), ∅, ((𝑔𝑥)‘(𝑚 − 1))) = if((𝑛 = 1 ∨ ¬ (𝑛 − 1) ∈ 𝑥), ∅, ((𝑔𝑥)‘(𝑛 − 1))))
3130cbvmptv 4903 . . . . . . . 8 (𝑚 ∈ ℕ ↦ if((𝑚 = 1 ∨ ¬ (𝑚 − 1) ∈ 𝑥), ∅, ((𝑔𝑥)‘(𝑚 − 1)))) = (𝑛 ∈ ℕ ↦ if((𝑛 = 1 ∨ ¬ (𝑛 − 1) ∈ 𝑥), ∅, ((𝑔𝑥)‘(𝑛 − 1))))
3213, 20, 23, 31nnfoctbdjlem 41194 . . . . . . 7 (((𝜑𝑔:ℕ–onto𝑋) ∧ 𝑥 ∈ 𝒫 ℕ ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → ∃𝑓(𝑓:ℕ–onto→(𝑋 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑓𝑛)))
33323exp 1113 . . . . . 6 ((𝜑𝑔:ℕ–onto𝑋) → (𝑥 ∈ 𝒫 ℕ → ((𝑔𝑥):𝑥1-1-onto→ran 𝑔 → ∃𝑓(𝑓:ℕ–onto→(𝑋 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑓𝑛)))))
3433rexlimdv 3169 . . . . 5 ((𝜑𝑔:ℕ–onto𝑋) → (∃𝑥 ∈ 𝒫 ℕ(𝑔𝑥):𝑥1-1-onto→ran 𝑔 → ∃𝑓(𝑓:ℕ–onto→(𝑋 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑓𝑛))))
3511, 34mpd 15 . . . 4 ((𝜑𝑔:ℕ–onto𝑋) → ∃𝑓(𝑓:ℕ–onto→(𝑋 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑓𝑛)))
3635ex 449 . . 3 (𝜑 → (𝑔:ℕ–onto𝑋 → ∃𝑓(𝑓:ℕ–onto→(𝑋 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑓𝑛))))
3736exlimdv 2011 . 2 (𝜑 → (∃𝑔 𝑔:ℕ–onto𝑋 → ∃𝑓(𝑓:ℕ–onto→(𝑋 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑓𝑛))))
384, 37mpd 15 1 (𝜑 → ∃𝑓(𝑓:ℕ–onto→(𝑋 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑓𝑛)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∨ wo 382   ∧ wa 383   ∧ w3a 1072   = wceq 1632  ∃wex 1853   ∈ wcel 2140   ≠ wne 2933  ∃wrex 3052  Vcvv 3341   ∪ cun 3714   ⊆ wss 3716  ∅c0 4059  ifcif 4231  𝒫 cpw 4303  {csn 4322  Disj wdisj 4773   class class class wbr 4805   ↦ cmpt 4882   We wwe 5225  ran crn 5268   ↾ cres 5269   Fn wfn 6045  –onto→wfo 6048  –1-1-onto→wf1o 6049  ‘cfv 6050  (class class class)co 6815  ωcom 7232   ≼ cdom 8122  1c1 10150   < clt 10287   − cmin 10479  ℕcn 11233 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-rep 4924  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-inf2 8714  ax-cnex 10205  ax-resscn 10206  ax-1cn 10207  ax-icn 10208  ax-addcl 10209  ax-addrcl 10210  ax-mulcl 10211  ax-mulrcl 10212  ax-mulcom 10213  ax-addass 10214  ax-mulass 10215  ax-distr 10216  ax-i2m1 10217  ax-1ne0 10218  ax-1rid 10219  ax-rnegex 10220  ax-rrecex 10221  ax-cnre 10222  ax-pre-lttri 10223  ax-pre-lttrn 10224  ax-pre-ltadd 10225  ax-pre-mulgt0 10226 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-pss 3732  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-tp 4327  df-op 4329  df-uni 4590  df-iun 4675  df-disj 4774  df-br 4806  df-opab 4866  df-mpt 4883  df-tr 4906  df-id 5175  df-eprel 5180  df-po 5188  df-so 5189  df-fr 5226  df-we 5228  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-pred 5842  df-ord 5888  df-on 5889  df-lim 5890  df-suc 5891  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-isom 6059  df-riota 6776  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-om 7233  df-wrecs 7578  df-recs 7639  df-rdg 7677  df-er 7914  df-en 8125  df-dom 8126  df-sdom 8127  df-pnf 10289  df-mnf 10290  df-xr 10291  df-ltxr 10292  df-le 10293  df-sub 10481  df-neg 10482  df-nn 11234  df-n0 11506  df-z 11591  df-uz 11901  df-rp 12047 This theorem is referenced by:  ismeannd  41206
 Copyright terms: Public domain W3C validator