![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nnfoctb | Structured version Visualization version GIF version |
Description: There exists a mapping from ℕ onto any (nonempty) countable set. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
nnfoctb | ⊢ ((𝐴 ≼ ω ∧ 𝐴 ≠ ∅) → ∃𝑓 𝑓:ℕ–onto→𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 476 | . . 3 ⊢ ((𝐴 ≼ ω ∧ 𝐴 ≠ ∅) → 𝐴 ≠ ∅) | |
2 | reldom 8003 | . . . . . . 7 ⊢ Rel ≼ | |
3 | 2 | a1i 11 | . . . . . 6 ⊢ (𝐴 ≼ ω → Rel ≼ ) |
4 | brrelex 5190 | . . . . . 6 ⊢ ((Rel ≼ ∧ 𝐴 ≼ ω) → 𝐴 ∈ V) | |
5 | 3, 4 | mpancom 704 | . . . . 5 ⊢ (𝐴 ≼ ω → 𝐴 ∈ V) |
6 | 0sdomg 8130 | . . . . 5 ⊢ (𝐴 ∈ V → (∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅)) | |
7 | 5, 6 | syl 17 | . . . 4 ⊢ (𝐴 ≼ ω → (∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅)) |
8 | 7 | adantr 480 | . . 3 ⊢ ((𝐴 ≼ ω ∧ 𝐴 ≠ ∅) → (∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅)) |
9 | 1, 8 | mpbird 247 | . 2 ⊢ ((𝐴 ≼ ω ∧ 𝐴 ≠ ∅) → ∅ ≺ 𝐴) |
10 | nnenom 12819 | . . . . . 6 ⊢ ℕ ≈ ω | |
11 | 10 | ensymi 8047 | . . . . 5 ⊢ ω ≈ ℕ |
12 | 11 | a1i 11 | . . . 4 ⊢ (𝐴 ≼ ω → ω ≈ ℕ) |
13 | domentr 8056 | . . . 4 ⊢ ((𝐴 ≼ ω ∧ ω ≈ ℕ) → 𝐴 ≼ ℕ) | |
14 | 12, 13 | mpdan 703 | . . 3 ⊢ (𝐴 ≼ ω → 𝐴 ≼ ℕ) |
15 | 14 | adantr 480 | . 2 ⊢ ((𝐴 ≼ ω ∧ 𝐴 ≠ ∅) → 𝐴 ≼ ℕ) |
16 | fodomr 8152 | . 2 ⊢ ((∅ ≺ 𝐴 ∧ 𝐴 ≼ ℕ) → ∃𝑓 𝑓:ℕ–onto→𝐴) | |
17 | 9, 15, 16 | syl2anc 694 | 1 ⊢ ((𝐴 ≼ ω ∧ 𝐴 ≠ ∅) → ∃𝑓 𝑓:ℕ–onto→𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∃wex 1744 ∈ wcel 2030 ≠ wne 2823 Vcvv 3231 ∅c0 3948 class class class wbr 4685 Rel wrel 5148 –onto→wfo 5924 ωcom 7107 ≈ cen 7994 ≼ cdom 7995 ≺ csdm 7996 ℕcn 11058 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-inf2 8576 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-n0 11331 df-z 11416 df-uz 11726 |
This theorem is referenced by: ssnnf1octb 39696 issalnnd 40881 nnfoctbdj 40991 |
Copyright terms: Public domain | W3C validator |