![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nnexpcld | Structured version Visualization version GIF version |
Description: Closure of exponentiation of nonnegative integers. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
nnexpcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℕ) |
nnexpcld.2 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
Ref | Expression |
---|---|
nnexpcld | ⊢ (𝜑 → (𝐴↑𝑁) ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnexpcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℕ) | |
2 | nnexpcld.2 | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
3 | nnexpcl 13067 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴↑𝑁) ∈ ℕ) | |
4 | 1, 2, 3 | syl2anc 696 | 1 ⊢ (𝜑 → (𝐴↑𝑁) ∈ ℕ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2139 (class class class)co 6813 ℕcn 11212 ℕ0cn0 11484 ↑cexp 13054 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-om 7231 df-2nd 7334 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-er 7911 df-en 8122 df-dom 8123 df-sdom 8124 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-nn 11213 df-n0 11485 df-z 11570 df-uz 11880 df-seq 12996 df-exp 13055 |
This theorem is referenced by: bitsp1 15355 bitsfzolem 15358 bitsfzo 15359 bitsmod 15360 bitsfi 15361 bitscmp 15362 bitsinv1lem 15365 bitsinv1 15366 2ebits 15371 bitsinvp1 15373 sadcaddlem 15381 sadadd3 15385 sadaddlem 15390 sadasslem 15394 bitsres 15397 bitsuz 15398 bitsshft 15399 smumullem 15416 smumul 15417 rplpwr 15478 rppwr 15479 pclem 15745 pcprendvds2 15748 pcpre1 15749 pcpremul 15750 pcdvdsb 15775 pcidlem 15778 pcid 15779 pcdvdstr 15782 pcgcd1 15783 pcprmpw2 15788 pcaddlem 15794 pcadd 15795 pcfaclem 15804 pcfac 15805 pcbc 15806 oddprmdvds 15809 prmpwdvds 15810 pockthlem 15811 2expltfac 16001 pgpfi1 18210 sylow1lem1 18213 sylow1lem3 18215 sylow1lem4 18216 sylow1lem5 18217 pgpfi 18220 gexexlem 18455 ablfac1lem 18667 ablfac1b 18669 ablfac1eu 18672 aalioulem2 24287 aalioulem5 24290 aaliou3lem9 24304 isppw2 25040 sgmppw 25121 fsumvma2 25138 pclogsum 25139 chpchtsum 25143 logfacubnd 25145 bposlem1 25208 bposlem5 25212 gausslemma2d 25298 lgseisen 25303 chebbnd1lem1 25357 rpvmasumlem 25375 dchrisum0flblem1 25396 dchrisum0flblem2 25397 ostth2lem2 25522 ostth2lem3 25523 oddpwdc 30725 eulerpartlemgh 30749 jm3.1lem3 38088 inductionexd 38955 stoweidlem25 40745 stoweidlem45 40765 wallispi2lem1 40791 ovnsubaddlem1 41290 ovolval5lem2 41373 fmtnoodd 41955 fmtnof1 41957 fmtnosqrt 41961 fmtnorec4 41971 odz2prm2pw 41985 fmtnoprmfac1lem 41986 fmtnoprmfac1 41987 fmtnoprmfac2lem1 41988 fmtnoprmfac2 41989 2pwp1prm 42013 lighneallem1 42032 proththdlem 42040 proththd 42041 pw2m1lepw2m1 42820 nnpw2even 42833 logbpw2m1 42871 nnpw2pmod 42887 nnpw2p 42890 nnolog2flm1 42894 dignn0flhalflem1 42919 |
Copyright terms: Public domain | W3C validator |