![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nndivdvds | Structured version Visualization version GIF version |
Description: Strong form of dvdsval2 15156 for positive integers. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
Ref | Expression |
---|---|
nndivdvds | ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐵 ∥ 𝐴 ↔ (𝐴 / 𝐵) ∈ ℕ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnz 11562 | . . . . 5 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℤ) | |
2 | 1 | adantl 473 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℤ) |
3 | nnne0 11216 | . . . . 5 ⊢ (𝐵 ∈ ℕ → 𝐵 ≠ 0) | |
4 | 3 | adantl 473 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐵 ≠ 0) |
5 | nnz 11562 | . . . . 5 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℤ) | |
6 | 5 | adantr 472 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℤ) |
7 | dvdsval2 15156 | . . . 4 ⊢ ((𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ∧ 𝐴 ∈ ℤ) → (𝐵 ∥ 𝐴 ↔ (𝐴 / 𝐵) ∈ ℤ)) | |
8 | 2, 4, 6, 7 | syl3anc 1463 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐵 ∥ 𝐴 ↔ (𝐴 / 𝐵) ∈ ℤ)) |
9 | 8 | anbi1d 743 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐵 ∥ 𝐴 ∧ 0 < (𝐴 / 𝐵)) ↔ ((𝐴 / 𝐵) ∈ ℤ ∧ 0 < (𝐴 / 𝐵)))) |
10 | nnre 11190 | . . . . 5 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ) | |
11 | 10 | adantr 472 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℝ) |
12 | nnre 11190 | . . . . 5 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℝ) | |
13 | 12 | adantl 473 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℝ) |
14 | nngt0 11212 | . . . . 5 ⊢ (𝐴 ∈ ℕ → 0 < 𝐴) | |
15 | 14 | adantr 472 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 < 𝐴) |
16 | nngt0 11212 | . . . . 5 ⊢ (𝐵 ∈ ℕ → 0 < 𝐵) | |
17 | 16 | adantl 473 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 < 𝐵) |
18 | 11, 13, 15, 17 | divgt0d 11122 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 0 < (𝐴 / 𝐵)) |
19 | 18 | biantrud 529 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐵 ∥ 𝐴 ↔ (𝐵 ∥ 𝐴 ∧ 0 < (𝐴 / 𝐵)))) |
20 | elnnz 11550 | . . 3 ⊢ ((𝐴 / 𝐵) ∈ ℕ ↔ ((𝐴 / 𝐵) ∈ ℤ ∧ 0 < (𝐴 / 𝐵))) | |
21 | 20 | a1i 11 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 / 𝐵) ∈ ℕ ↔ ((𝐴 / 𝐵) ∈ ℤ ∧ 0 < (𝐴 / 𝐵)))) |
22 | 9, 19, 21 | 3bitr4d 300 | 1 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐵 ∥ 𝐴 ↔ (𝐴 / 𝐵) ∈ ℕ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∈ wcel 2127 ≠ wne 2920 class class class wbr 4792 (class class class)co 6801 ℝcr 10098 0cc0 10099 < clt 10237 / cdiv 10847 ℕcn 11183 ℤcz 11540 ∥ cdvds 15153 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-8 2129 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 ax-sep 4921 ax-nul 4929 ax-pow 4980 ax-pr 5043 ax-un 7102 ax-resscn 10156 ax-1cn 10157 ax-icn 10158 ax-addcl 10159 ax-addrcl 10160 ax-mulcl 10161 ax-mulrcl 10162 ax-mulcom 10163 ax-addass 10164 ax-mulass 10165 ax-distr 10166 ax-i2m1 10167 ax-1ne0 10168 ax-1rid 10169 ax-rnegex 10170 ax-rrecex 10171 ax-cnre 10172 ax-pre-lttri 10173 ax-pre-lttrn 10174 ax-pre-ltadd 10175 ax-pre-mulgt0 10176 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-eu 2599 df-mo 2600 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-ne 2921 df-nel 3024 df-ral 3043 df-rex 3044 df-reu 3045 df-rmo 3046 df-rab 3047 df-v 3330 df-sbc 3565 df-csb 3663 df-dif 3706 df-un 3708 df-in 3710 df-ss 3717 df-pss 3719 df-nul 4047 df-if 4219 df-pw 4292 df-sn 4310 df-pr 4312 df-tp 4314 df-op 4316 df-uni 4577 df-iun 4662 df-br 4793 df-opab 4853 df-mpt 4870 df-tr 4893 df-id 5162 df-eprel 5167 df-po 5175 df-so 5176 df-fr 5213 df-we 5215 df-xp 5260 df-rel 5261 df-cnv 5262 df-co 5263 df-dm 5264 df-rn 5265 df-res 5266 df-ima 5267 df-pred 5829 df-ord 5875 df-on 5876 df-lim 5877 df-suc 5878 df-iota 6000 df-fun 6039 df-fn 6040 df-f 6041 df-f1 6042 df-fo 6043 df-f1o 6044 df-fv 6045 df-riota 6762 df-ov 6804 df-oprab 6805 df-mpt2 6806 df-om 7219 df-wrecs 7564 df-recs 7625 df-rdg 7663 df-er 7899 df-en 8110 df-dom 8111 df-sdom 8112 df-pnf 10239 df-mnf 10240 df-xr 10241 df-ltxr 10242 df-le 10243 df-sub 10431 df-neg 10432 df-div 10848 df-nn 11184 df-z 11541 df-dvds 15154 |
This theorem is referenced by: nndivides 15163 dvdsdivcl 15211 divgcdnn 15409 lcmgcdlem 15492 isprm6 15599 divnumden 15629 hashgcdlem 15666 hashgcdeq 15667 oddprmdvds 15780 gexexlem 18426 ablfac1lem 18638 pgpfac1lem3a 18646 znrrg 20087 dvdsflf1o 25083 mersenne 25122 perfectlem1 25124 perfect 25126 dchrvmasumlem1 25354 dchrisum0flblem2 25368 logsqvma 25401 oddpwdc 30696 jm2.20nn 38035 jm2.27c 38045 fouriersw 40920 proththdlem 42009 perfectALTVlem1 42109 perfectALTV 42111 |
Copyright terms: Public domain | W3C validator |