![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nncand | Structured version Visualization version GIF version |
Description: Cancellation law for subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
negidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
pncand.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
Ref | Expression |
---|---|
nncand | ⊢ (𝜑 → (𝐴 − (𝐴 − 𝐵)) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | pncand.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | nncan 10511 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − (𝐴 − 𝐵)) = 𝐵) | |
4 | 1, 2, 3 | syl2anc 565 | 1 ⊢ (𝜑 → (𝐴 − (𝐴 − 𝐵)) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1630 ∈ wcel 2144 (class class class)co 6792 ℂcc 10135 − cmin 10467 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-br 4785 df-opab 4845 df-mpt 4862 df-id 5157 df-po 5170 df-so 5171 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-er 7895 df-en 8109 df-dom 8110 df-sdom 8111 df-pnf 10277 df-mnf 10278 df-ltxr 10280 df-sub 10469 |
This theorem is referenced by: moddiffl 12888 flmod 12891 ccatswrd 13664 o1dif 14567 fprodser 14885 fprodrev 14913 fallfacval3 14948 efaddlem 15028 4sqlem5 15852 mul4sqlem 15863 4sqlem14 15868 coe1tmmul2 19860 znunit 20126 blssps 22448 blss 22449 metdstri 22873 ivthlem3 23440 ioorcl2 23559 vitalilem2 23596 dvexp3 23960 dvcvx 24002 iblulm 24380 chordthmlem4 24782 heron 24785 cubic 24796 dquartlem1 24798 birthdaylem2 24899 lgamgulmlem2 24976 lgamcvg2 25001 ftalem2 25020 basellem3 25029 gausslemma2dlem1a 25310 lgsquadlem1 25325 pntrlog2bndlem4 25489 axsegconlem1 26017 lt2addrd 29850 ballotlemsf1o 30909 bcprod 31956 lzenom 37852 rmspecfund 37993 fzmaxdif 38067 jm2.18 38074 jm2.19 38079 jm2.20nn 38083 supxrgere 40059 lptre2pt 40384 ioodvbdlimc2lem 40661 dvnprodlem1 40673 dvnprodlem2 40674 fourierdlem4 40839 fourierdlem26 40861 fourierdlem42 40877 fourierdlem48 40882 fourierdlem65 40899 fouriersw 40959 sge0gtfsumgt 41171 meaiininclem 41214 fmtnorec2lem 41972 goldbachthlem2 41976 pw2m1lepw2m1 42828 |
Copyright terms: Public domain | W3C validator |