Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnaordex Structured version   Visualization version   GIF version

Theorem nnaordex 7872
 Description: Equivalence for ordering. Compare Exercise 23 of [Enderton] p. 88. (Contributed by NM, 5-Dec-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nnaordex ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝐵)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem nnaordex
StepHypRef Expression
1 nnon 7218 . . . . . 6 (𝐵 ∈ ω → 𝐵 ∈ On)
21adantl 467 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝐵 ∈ On)
3 onelss 5909 . . . . 5 (𝐵 ∈ On → (𝐴𝐵𝐴𝐵))
42, 3syl 17 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴𝐵))
5 nnawordex 7871 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ ∃𝑥 ∈ ω (𝐴 +𝑜 𝑥) = 𝐵))
64, 5sylibd 229 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 → ∃𝑥 ∈ ω (𝐴 +𝑜 𝑥) = 𝐵))
7 simplr 752 . . . . . . . . 9 (((𝐴 ∈ ω ∧ 𝐴𝐵) ∧ 𝑥 ∈ ω) → 𝐴𝐵)
8 eleq2 2839 . . . . . . . . 9 ((𝐴 +𝑜 𝑥) = 𝐵 → (𝐴 ∈ (𝐴 +𝑜 𝑥) ↔ 𝐴𝐵))
97, 8syl5ibrcom 237 . . . . . . . 8 (((𝐴 ∈ ω ∧ 𝐴𝐵) ∧ 𝑥 ∈ ω) → ((𝐴 +𝑜 𝑥) = 𝐵𝐴 ∈ (𝐴 +𝑜 𝑥)))
10 peano1 7232 . . . . . . . . . . . 12 ∅ ∈ ω
11 nnaord 7853 . . . . . . . . . . . 12 ((∅ ∈ ω ∧ 𝑥 ∈ ω ∧ 𝐴 ∈ ω) → (∅ ∈ 𝑥 ↔ (𝐴 +𝑜 ∅) ∈ (𝐴 +𝑜 𝑥)))
1210, 11mp3an1 1559 . . . . . . . . . . 11 ((𝑥 ∈ ω ∧ 𝐴 ∈ ω) → (∅ ∈ 𝑥 ↔ (𝐴 +𝑜 ∅) ∈ (𝐴 +𝑜 𝑥)))
1312ancoms 455 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → (∅ ∈ 𝑥 ↔ (𝐴 +𝑜 ∅) ∈ (𝐴 +𝑜 𝑥)))
14 nna0 7838 . . . . . . . . . . . 12 (𝐴 ∈ ω → (𝐴 +𝑜 ∅) = 𝐴)
1514adantr 466 . . . . . . . . . . 11 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → (𝐴 +𝑜 ∅) = 𝐴)
1615eleq1d 2835 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → ((𝐴 +𝑜 ∅) ∈ (𝐴 +𝑜 𝑥) ↔ 𝐴 ∈ (𝐴 +𝑜 𝑥)))
1713, 16bitrd 268 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → (∅ ∈ 𝑥𝐴 ∈ (𝐴 +𝑜 𝑥)))
1817adantlr 694 . . . . . . . 8 (((𝐴 ∈ ω ∧ 𝐴𝐵) ∧ 𝑥 ∈ ω) → (∅ ∈ 𝑥𝐴 ∈ (𝐴 +𝑜 𝑥)))
199, 18sylibrd 249 . . . . . . 7 (((𝐴 ∈ ω ∧ 𝐴𝐵) ∧ 𝑥 ∈ ω) → ((𝐴 +𝑜 𝑥) = 𝐵 → ∅ ∈ 𝑥))
2019ancrd 541 . . . . . 6 (((𝐴 ∈ ω ∧ 𝐴𝐵) ∧ 𝑥 ∈ ω) → ((𝐴 +𝑜 𝑥) = 𝐵 → (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝐵)))
2120reximdva 3165 . . . . 5 ((𝐴 ∈ ω ∧ 𝐴𝐵) → (∃𝑥 ∈ ω (𝐴 +𝑜 𝑥) = 𝐵 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝐵)))
2221ex 397 . . . 4 (𝐴 ∈ ω → (𝐴𝐵 → (∃𝑥 ∈ ω (𝐴 +𝑜 𝑥) = 𝐵 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝐵))))
2322adantr 466 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 → (∃𝑥 ∈ ω (𝐴 +𝑜 𝑥) = 𝐵 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝐵))))
246, 23mpdd 43 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝐵)))
2517biimpa 462 . . . . . 6 (((𝐴 ∈ ω ∧ 𝑥 ∈ ω) ∧ ∅ ∈ 𝑥) → 𝐴 ∈ (𝐴 +𝑜 𝑥))
2625, 8syl5ibcom 235 . . . . 5 (((𝐴 ∈ ω ∧ 𝑥 ∈ ω) ∧ ∅ ∈ 𝑥) → ((𝐴 +𝑜 𝑥) = 𝐵𝐴𝐵))
2726expimpd 441 . . . 4 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → ((∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝐵) → 𝐴𝐵))
2827rexlimdva 3179 . . 3 (𝐴 ∈ ω → (∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝐵) → 𝐴𝐵))
2928adantr 466 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝐵) → 𝐴𝐵))
3024, 29impbid 202 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +𝑜 𝑥) = 𝐵)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 382   = wceq 1631   ∈ wcel 2145  ∃wrex 3062   ⊆ wss 3723  ∅c0 4063  Oncon0 5866  (class class class)co 6793  ωcom 7212   +𝑜 coa 7710 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-oadd 7717 This theorem is referenced by:  ltexpi  9926
 Copyright terms: Public domain W3C validator