MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnaord Structured version   Visualization version   GIF version

Theorem nnaord 7397
Description: Ordering property of addition. Proposition 8.4 of [TakeutiZaring] p. 58, limited to natural numbers, and its converse. (Contributed by NM, 7-Mar-1996.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nnaord ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴𝐵 ↔ (𝐶 +𝑜 𝐴) ∈ (𝐶 +𝑜 𝐵)))

Proof of Theorem nnaord
StepHypRef Expression
1 nnaordi 7396 . . 3 ((𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴𝐵 → (𝐶 +𝑜 𝐴) ∈ (𝐶 +𝑜 𝐵)))
213adant1 1062 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴𝐵 → (𝐶 +𝑜 𝐴) ∈ (𝐶 +𝑜 𝐵)))
3 oveq2 6371 . . . . . 6 (𝐴 = 𝐵 → (𝐶 +𝑜 𝐴) = (𝐶 +𝑜 𝐵))
43a1i 11 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴 = 𝐵 → (𝐶 +𝑜 𝐴) = (𝐶 +𝑜 𝐵)))
5 nnaordi 7396 . . . . . 6 ((𝐴 ∈ ω ∧ 𝐶 ∈ ω) → (𝐵𝐴 → (𝐶 +𝑜 𝐵) ∈ (𝐶 +𝑜 𝐴)))
653adant2 1063 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐵𝐴 → (𝐶 +𝑜 𝐵) ∈ (𝐶 +𝑜 𝐴)))
74, 6orim12d 869 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴 = 𝐵𝐵𝐴) → ((𝐶 +𝑜 𝐴) = (𝐶 +𝑜 𝐵) ∨ (𝐶 +𝑜 𝐵) ∈ (𝐶 +𝑜 𝐴))))
87con3d 142 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (¬ ((𝐶 +𝑜 𝐴) = (𝐶 +𝑜 𝐵) ∨ (𝐶 +𝑜 𝐵) ∈ (𝐶 +𝑜 𝐴)) → ¬ (𝐴 = 𝐵𝐵𝐴)))
9 df-3an 1023 . . . . . 6 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ↔ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐶 ∈ ω))
10 ancom 459 . . . . . 6 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐶 ∈ ω) ↔ (𝐶 ∈ ω ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)))
11 anandi 857 . . . . . 6 ((𝐶 ∈ ω ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) ↔ ((𝐶 ∈ ω ∧ 𝐴 ∈ ω) ∧ (𝐶 ∈ ω ∧ 𝐵 ∈ ω)))
129, 10, 113bitri 281 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ↔ ((𝐶 ∈ ω ∧ 𝐴 ∈ ω) ∧ (𝐶 ∈ ω ∧ 𝐵 ∈ ω)))
13 nnacl 7389 . . . . . . 7 ((𝐶 ∈ ω ∧ 𝐴 ∈ ω) → (𝐶 +𝑜 𝐴) ∈ ω)
14 nnord 6777 . . . . . . 7 ((𝐶 +𝑜 𝐴) ∈ ω → Ord (𝐶 +𝑜 𝐴))
1513, 14syl 17 . . . . . 6 ((𝐶 ∈ ω ∧ 𝐴 ∈ ω) → Ord (𝐶 +𝑜 𝐴))
16 nnacl 7389 . . . . . . 7 ((𝐶 ∈ ω ∧ 𝐵 ∈ ω) → (𝐶 +𝑜 𝐵) ∈ ω)
17 nnord 6777 . . . . . . 7 ((𝐶 +𝑜 𝐵) ∈ ω → Ord (𝐶 +𝑜 𝐵))
1816, 17syl 17 . . . . . 6 ((𝐶 ∈ ω ∧ 𝐵 ∈ ω) → Ord (𝐶 +𝑜 𝐵))
1915, 18anim12i 582 . . . . 5 (((𝐶 ∈ ω ∧ 𝐴 ∈ ω) ∧ (𝐶 ∈ ω ∧ 𝐵 ∈ ω)) → (Ord (𝐶 +𝑜 𝐴) ∧ Ord (𝐶 +𝑜 𝐵)))
2012, 19sylbi 202 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (Ord (𝐶 +𝑜 𝐴) ∧ Ord (𝐶 +𝑜 𝐵)))
21 ordtri2 5509 . . . 4 ((Ord (𝐶 +𝑜 𝐴) ∧ Ord (𝐶 +𝑜 𝐵)) → ((𝐶 +𝑜 𝐴) ∈ (𝐶 +𝑜 𝐵) ↔ ¬ ((𝐶 +𝑜 𝐴) = (𝐶 +𝑜 𝐵) ∨ (𝐶 +𝑜 𝐵) ∈ (𝐶 +𝑜 𝐴))))
2220, 21syl 17 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐶 +𝑜 𝐴) ∈ (𝐶 +𝑜 𝐵) ↔ ¬ ((𝐶 +𝑜 𝐴) = (𝐶 +𝑜 𝐵) ∨ (𝐶 +𝑜 𝐵) ∈ (𝐶 +𝑜 𝐴))))
23 nnord 6777 . . . . . 6 (𝐴 ∈ ω → Ord 𝐴)
24 nnord 6777 . . . . . 6 (𝐵 ∈ ω → Ord 𝐵)
2523, 24anim12i 582 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (Ord 𝐴 ∧ Ord 𝐵))
26253adant3 1064 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (Ord 𝐴 ∧ Ord 𝐵))
27 ordtri2 5509 . . . 4 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵 ↔ ¬ (𝐴 = 𝐵𝐵𝐴)))
2826, 27syl 17 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴𝐵 ↔ ¬ (𝐴 = 𝐵𝐵𝐴)))
298, 22, 283imtr4d 278 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐶 +𝑜 𝐴) ∈ (𝐶 +𝑜 𝐵) → 𝐴𝐵))
302, 29impbid 197 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴𝐵 ↔ (𝐶 +𝑜 𝐴) ∈ (𝐶 +𝑜 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 191  wo 377  wa 378  w3a 1021   = wceq 1468  wcel 1937  Ord word 5473  (class class class)co 6363  ωcom 6769   +𝑜 coa 7256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1698  ax-4 1711  ax-5 1789  ax-6 1836  ax-7 1883  ax-8 1939  ax-9 1946  ax-10 1965  ax-11 1970  ax-12 1983  ax-13 2137  ax-ext 2485  ax-sep 4558  ax-nul 4567  ax-pow 4619  ax-pr 4680  ax-un 6659
This theorem depends on definitions:  df-bi 192  df-or 379  df-an 380  df-3or 1022  df-3an 1023  df-tru 1471  df-ex 1693  df-nf 1697  df-sb 1829  df-eu 2357  df-mo 2358  df-clab 2492  df-cleq 2498  df-clel 2501  df-nfc 2635  df-ne 2677  df-ral 2796  df-rex 2797  df-reu 2798  df-rab 2800  df-v 3068  df-sbc 3292  df-csb 3386  df-dif 3429  df-un 3431  df-in 3433  df-ss 3440  df-pss 3442  df-nul 3758  df-if 3909  df-pw 3980  df-sn 3996  df-pr 3998  df-tp 4000  df-op 4002  df-uni 4229  df-iun 4309  df-br 4435  df-opab 4494  df-mpt 4495  df-tr 4531  df-eprel 4791  df-id 4795  df-po 4801  df-so 4802  df-fr 4839  df-we 4841  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-pred 5431  df-ord 5477  df-on 5478  df-lim 5479  df-suc 5480  df-iota 5597  df-fun 5635  df-fn 5636  df-f 5637  df-f1 5638  df-fo 5639  df-f1o 5640  df-fv 5641  df-ov 6366  df-oprab 6367  df-mpt2 6368  df-om 6770  df-wrecs 7105  df-recs 7167  df-rdg 7205  df-oadd 7263
This theorem is referenced by:  nnaordr  7398  nnaword  7405  nnaordex  7416  nnneo  7429  unfilem1  7920  ltapi  9413  1lt2pi  9415
  Copyright terms: Public domain W3C validator