MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnaord Structured version   Visualization version   GIF version

Theorem nnaord 7744
Description: Ordering property of addition. Proposition 8.4 of [TakeutiZaring] p. 58, limited to natural numbers, and its converse. (Contributed by NM, 7-Mar-1996.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nnaord ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴𝐵 ↔ (𝐶 +𝑜 𝐴) ∈ (𝐶 +𝑜 𝐵)))

Proof of Theorem nnaord
StepHypRef Expression
1 nnaordi 7743 . . 3 ((𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴𝐵 → (𝐶 +𝑜 𝐴) ∈ (𝐶 +𝑜 𝐵)))
213adant1 1099 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴𝐵 → (𝐶 +𝑜 𝐴) ∈ (𝐶 +𝑜 𝐵)))
3 oveq2 6698 . . . . . 6 (𝐴 = 𝐵 → (𝐶 +𝑜 𝐴) = (𝐶 +𝑜 𝐵))
43a1i 11 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴 = 𝐵 → (𝐶 +𝑜 𝐴) = (𝐶 +𝑜 𝐵)))
5 nnaordi 7743 . . . . . 6 ((𝐴 ∈ ω ∧ 𝐶 ∈ ω) → (𝐵𝐴 → (𝐶 +𝑜 𝐵) ∈ (𝐶 +𝑜 𝐴)))
653adant2 1100 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐵𝐴 → (𝐶 +𝑜 𝐵) ∈ (𝐶 +𝑜 𝐴)))
74, 6orim12d 901 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴 = 𝐵𝐵𝐴) → ((𝐶 +𝑜 𝐴) = (𝐶 +𝑜 𝐵) ∨ (𝐶 +𝑜 𝐵) ∈ (𝐶 +𝑜 𝐴))))
87con3d 148 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (¬ ((𝐶 +𝑜 𝐴) = (𝐶 +𝑜 𝐵) ∨ (𝐶 +𝑜 𝐵) ∈ (𝐶 +𝑜 𝐴)) → ¬ (𝐴 = 𝐵𝐵𝐴)))
9 df-3an 1056 . . . . . 6 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ↔ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐶 ∈ ω))
10 ancom 465 . . . . . 6 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐶 ∈ ω) ↔ (𝐶 ∈ ω ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)))
11 anandi 888 . . . . . 6 ((𝐶 ∈ ω ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) ↔ ((𝐶 ∈ ω ∧ 𝐴 ∈ ω) ∧ (𝐶 ∈ ω ∧ 𝐵 ∈ ω)))
129, 10, 113bitri 286 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) ↔ ((𝐶 ∈ ω ∧ 𝐴 ∈ ω) ∧ (𝐶 ∈ ω ∧ 𝐵 ∈ ω)))
13 nnacl 7736 . . . . . . 7 ((𝐶 ∈ ω ∧ 𝐴 ∈ ω) → (𝐶 +𝑜 𝐴) ∈ ω)
14 nnord 7115 . . . . . . 7 ((𝐶 +𝑜 𝐴) ∈ ω → Ord (𝐶 +𝑜 𝐴))
1513, 14syl 17 . . . . . 6 ((𝐶 ∈ ω ∧ 𝐴 ∈ ω) → Ord (𝐶 +𝑜 𝐴))
16 nnacl 7736 . . . . . . 7 ((𝐶 ∈ ω ∧ 𝐵 ∈ ω) → (𝐶 +𝑜 𝐵) ∈ ω)
17 nnord 7115 . . . . . . 7 ((𝐶 +𝑜 𝐵) ∈ ω → Ord (𝐶 +𝑜 𝐵))
1816, 17syl 17 . . . . . 6 ((𝐶 ∈ ω ∧ 𝐵 ∈ ω) → Ord (𝐶 +𝑜 𝐵))
1915, 18anim12i 589 . . . . 5 (((𝐶 ∈ ω ∧ 𝐴 ∈ ω) ∧ (𝐶 ∈ ω ∧ 𝐵 ∈ ω)) → (Ord (𝐶 +𝑜 𝐴) ∧ Ord (𝐶 +𝑜 𝐵)))
2012, 19sylbi 207 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (Ord (𝐶 +𝑜 𝐴) ∧ Ord (𝐶 +𝑜 𝐵)))
21 ordtri2 5796 . . . 4 ((Ord (𝐶 +𝑜 𝐴) ∧ Ord (𝐶 +𝑜 𝐵)) → ((𝐶 +𝑜 𝐴) ∈ (𝐶 +𝑜 𝐵) ↔ ¬ ((𝐶 +𝑜 𝐴) = (𝐶 +𝑜 𝐵) ∨ (𝐶 +𝑜 𝐵) ∈ (𝐶 +𝑜 𝐴))))
2220, 21syl 17 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐶 +𝑜 𝐴) ∈ (𝐶 +𝑜 𝐵) ↔ ¬ ((𝐶 +𝑜 𝐴) = (𝐶 +𝑜 𝐵) ∨ (𝐶 +𝑜 𝐵) ∈ (𝐶 +𝑜 𝐴))))
23 nnord 7115 . . . . . 6 (𝐴 ∈ ω → Ord 𝐴)
24 nnord 7115 . . . . . 6 (𝐵 ∈ ω → Ord 𝐵)
2523, 24anim12i 589 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (Ord 𝐴 ∧ Ord 𝐵))
26253adant3 1101 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (Ord 𝐴 ∧ Ord 𝐵))
27 ordtri2 5796 . . . 4 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵 ↔ ¬ (𝐴 = 𝐵𝐵𝐴)))
2826, 27syl 17 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴𝐵 ↔ ¬ (𝐴 = 𝐵𝐵𝐴)))
298, 22, 283imtr4d 283 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐶 +𝑜 𝐴) ∈ (𝐶 +𝑜 𝐵) → 𝐴𝐵))
302, 29impbid 202 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → (𝐴𝐵 ↔ (𝐶 +𝑜 𝐴) ∈ (𝐶 +𝑜 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383  w3a 1054   = wceq 1523  wcel 2030  Ord word 5760  (class class class)co 6690  ωcom 7107   +𝑜 coa 7602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-oadd 7609
This theorem is referenced by:  nnaordr  7745  nnaword  7752  nnaordex  7763  nnneo  7776  unfilem1  8265  ltapi  9763  1lt2pi  9765
  Copyright terms: Public domain W3C validator