![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nn2ge | Structured version Visualization version GIF version |
Description: There exists a positive integer greater than or equal to any two others. (Contributed by NM, 18-Aug-1999.) |
Ref | Expression |
---|---|
nn2ge | ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ∃𝑥 ∈ ℕ (𝐴 ≤ 𝑥 ∧ 𝐵 ≤ 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnre 11190 | . . 3 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ) | |
2 | 1 | adantr 472 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℝ) |
3 | nnre 11190 | . . 3 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℝ) | |
4 | 3 | adantl 473 | . 2 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℝ) |
5 | leid 10296 | . . . . . . 7 ⊢ (𝐵 ∈ ℝ → 𝐵 ≤ 𝐵) | |
6 | 5 | biantrud 529 | . . . . . 6 ⊢ (𝐵 ∈ ℝ → (𝐴 ≤ 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐵))) |
7 | 6 | biimpa 502 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐵)) |
8 | 3, 7 | sylan 489 | . . . 4 ⊢ ((𝐵 ∈ ℕ ∧ 𝐴 ≤ 𝐵) → (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐵)) |
9 | breq2 4796 | . . . . . 6 ⊢ (𝑥 = 𝐵 → (𝐴 ≤ 𝑥 ↔ 𝐴 ≤ 𝐵)) | |
10 | breq2 4796 | . . . . . 6 ⊢ (𝑥 = 𝐵 → (𝐵 ≤ 𝑥 ↔ 𝐵 ≤ 𝐵)) | |
11 | 9, 10 | anbi12d 749 | . . . . 5 ⊢ (𝑥 = 𝐵 → ((𝐴 ≤ 𝑥 ∧ 𝐵 ≤ 𝑥) ↔ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐵))) |
12 | 11 | rspcev 3437 | . . . 4 ⊢ ((𝐵 ∈ ℕ ∧ (𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐵)) → ∃𝑥 ∈ ℕ (𝐴 ≤ 𝑥 ∧ 𝐵 ≤ 𝑥)) |
13 | 8, 12 | syldan 488 | . . 3 ⊢ ((𝐵 ∈ ℕ ∧ 𝐴 ≤ 𝐵) → ∃𝑥 ∈ ℕ (𝐴 ≤ 𝑥 ∧ 𝐵 ≤ 𝑥)) |
14 | 13 | adantll 752 | . 2 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝐴 ≤ 𝐵) → ∃𝑥 ∈ ℕ (𝐴 ≤ 𝑥 ∧ 𝐵 ≤ 𝑥)) |
15 | leid 10296 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → 𝐴 ≤ 𝐴) | |
16 | 15 | anim1i 593 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ≤ 𝐴) → (𝐴 ≤ 𝐴 ∧ 𝐵 ≤ 𝐴)) |
17 | 1, 16 | sylan 489 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ≤ 𝐴) → (𝐴 ≤ 𝐴 ∧ 𝐵 ≤ 𝐴)) |
18 | breq2 4796 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝐴 ≤ 𝑥 ↔ 𝐴 ≤ 𝐴)) | |
19 | breq2 4796 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝐵 ≤ 𝑥 ↔ 𝐵 ≤ 𝐴)) | |
20 | 18, 19 | anbi12d 749 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((𝐴 ≤ 𝑥 ∧ 𝐵 ≤ 𝑥) ↔ (𝐴 ≤ 𝐴 ∧ 𝐵 ≤ 𝐴))) |
21 | 20 | rspcev 3437 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ (𝐴 ≤ 𝐴 ∧ 𝐵 ≤ 𝐴)) → ∃𝑥 ∈ ℕ (𝐴 ≤ 𝑥 ∧ 𝐵 ≤ 𝑥)) |
22 | 17, 21 | syldan 488 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ≤ 𝐴) → ∃𝑥 ∈ ℕ (𝐴 ≤ 𝑥 ∧ 𝐵 ≤ 𝑥)) |
23 | 22 | adantlr 753 | . 2 ⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ 𝐵 ≤ 𝐴) → ∃𝑥 ∈ ℕ (𝐴 ≤ 𝑥 ∧ 𝐵 ≤ 𝑥)) |
24 | 2, 4, 14, 23 | lecasei 10306 | 1 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ∃𝑥 ∈ ℕ (𝐴 ≤ 𝑥 ∧ 𝐵 ≤ 𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1620 ∈ wcel 2127 ∃wrex 3039 class class class wbr 4792 ℝcr 10098 ≤ cle 10238 ℕcn 11183 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-8 2129 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 ax-sep 4921 ax-nul 4929 ax-pow 4980 ax-pr 5043 ax-un 7102 ax-resscn 10156 ax-1cn 10157 ax-icn 10158 ax-addcl 10159 ax-addrcl 10160 ax-mulcl 10161 ax-mulrcl 10162 ax-i2m1 10167 ax-1ne0 10168 ax-rrecex 10171 ax-cnre 10172 ax-pre-lttri 10173 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-eu 2599 df-mo 2600 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-ne 2921 df-nel 3024 df-ral 3043 df-rex 3044 df-reu 3045 df-rab 3047 df-v 3330 df-sbc 3565 df-csb 3663 df-dif 3706 df-un 3708 df-in 3710 df-ss 3717 df-pss 3719 df-nul 4047 df-if 4219 df-pw 4292 df-sn 4310 df-pr 4312 df-tp 4314 df-op 4316 df-uni 4577 df-iun 4662 df-br 4793 df-opab 4853 df-mpt 4870 df-tr 4893 df-id 5162 df-eprel 5167 df-po 5175 df-so 5176 df-fr 5213 df-we 5215 df-xp 5260 df-rel 5261 df-cnv 5262 df-co 5263 df-dm 5264 df-rn 5265 df-res 5266 df-ima 5267 df-pred 5829 df-ord 5875 df-on 5876 df-lim 5877 df-suc 5878 df-iota 6000 df-fun 6039 df-fn 6040 df-f 6041 df-f1 6042 df-fo 6043 df-f1o 6044 df-fv 6045 df-ov 6804 df-om 7219 df-wrecs 7564 df-recs 7625 df-rdg 7663 df-er 7899 df-en 8110 df-dom 8111 df-sdom 8112 df-pnf 10239 df-mnf 10240 df-xr 10241 df-ltxr 10242 df-le 10243 df-nn 11184 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |