MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn1suc Structured version   Visualization version   GIF version

Theorem nn1suc 11001
Description: If a statement holds for 1 and also holds for a successor, it holds for all positive integers. The first three hypotheses give us the substitution instances we need; the last two show that it holds for 1 and for a successor. (Contributed by NM, 11-Oct-2004.) (Revised by Mario Carneiro, 16-May-2014.)
Hypotheses
Ref Expression
nn1suc.1 (𝑥 = 1 → (𝜑𝜓))
nn1suc.3 (𝑥 = (𝑦 + 1) → (𝜑𝜒))
nn1suc.4 (𝑥 = 𝐴 → (𝜑𝜃))
nn1suc.5 𝜓
nn1suc.6 (𝑦 ∈ ℕ → 𝜒)
Assertion
Ref Expression
nn1suc (𝐴 ∈ ℕ → 𝜃)
Distinct variable groups:   𝑥,𝑦,𝐴   𝜓,𝑥   𝜒,𝑥   𝜃,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)   𝜃(𝑦)

Proof of Theorem nn1suc
StepHypRef Expression
1 nn1suc.5 . . . . 5 𝜓
2 1ex 9995 . . . . . 6 1 ∈ V
3 nn1suc.1 . . . . . 6 (𝑥 = 1 → (𝜑𝜓))
42, 3sbcie 3457 . . . . 5 ([1 / 𝑥]𝜑𝜓)
51, 4mpbir 221 . . . 4 [1 / 𝑥]𝜑
6 1nn 10991 . . . . . . 7 1 ∈ ℕ
7 eleq1 2686 . . . . . . 7 (𝐴 = 1 → (𝐴 ∈ ℕ ↔ 1 ∈ ℕ))
86, 7mpbiri 248 . . . . . 6 (𝐴 = 1 → 𝐴 ∈ ℕ)
9 nn1suc.4 . . . . . . 7 (𝑥 = 𝐴 → (𝜑𝜃))
109sbcieg 3455 . . . . . 6 (𝐴 ∈ ℕ → ([𝐴 / 𝑥]𝜑𝜃))
118, 10syl 17 . . . . 5 (𝐴 = 1 → ([𝐴 / 𝑥]𝜑𝜃))
12 dfsbcq 3424 . . . . 5 (𝐴 = 1 → ([𝐴 / 𝑥]𝜑[1 / 𝑥]𝜑))
1311, 12bitr3d 270 . . . 4 (𝐴 = 1 → (𝜃[1 / 𝑥]𝜑))
145, 13mpbiri 248 . . 3 (𝐴 = 1 → 𝜃)
1514a1i 11 . 2 (𝐴 ∈ ℕ → (𝐴 = 1 → 𝜃))
16 ovex 6643 . . . . . 6 (𝑦 + 1) ∈ V
17 nn1suc.3 . . . . . 6 (𝑥 = (𝑦 + 1) → (𝜑𝜒))
1816, 17sbcie 3457 . . . . 5 ([(𝑦 + 1) / 𝑥]𝜑𝜒)
19 oveq1 6622 . . . . . 6 (𝑦 = (𝐴 − 1) → (𝑦 + 1) = ((𝐴 − 1) + 1))
2019sbceq1d 3427 . . . . 5 (𝑦 = (𝐴 − 1) → ([(𝑦 + 1) / 𝑥]𝜑[((𝐴 − 1) + 1) / 𝑥]𝜑))
2118, 20syl5bbr 274 . . . 4 (𝑦 = (𝐴 − 1) → (𝜒[((𝐴 − 1) + 1) / 𝑥]𝜑))
22 nn1suc.6 . . . 4 (𝑦 ∈ ℕ → 𝜒)
2321, 22vtoclga 3262 . . 3 ((𝐴 − 1) ∈ ℕ → [((𝐴 − 1) + 1) / 𝑥]𝜑)
24 nncn 10988 . . . . . 6 (𝐴 ∈ ℕ → 𝐴 ∈ ℂ)
25 ax-1cn 9954 . . . . . 6 1 ∈ ℂ
26 npcan 10250 . . . . . 6 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 − 1) + 1) = 𝐴)
2724, 25, 26sylancl 693 . . . . 5 (𝐴 ∈ ℕ → ((𝐴 − 1) + 1) = 𝐴)
2827sbceq1d 3427 . . . 4 (𝐴 ∈ ℕ → ([((𝐴 − 1) + 1) / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
2928, 10bitrd 268 . . 3 (𝐴 ∈ ℕ → ([((𝐴 − 1) + 1) / 𝑥]𝜑𝜃))
3023, 29syl5ib 234 . 2 (𝐴 ∈ ℕ → ((𝐴 − 1) ∈ ℕ → 𝜃))
31 nn1m1nn 11000 . 2 (𝐴 ∈ ℕ → (𝐴 = 1 ∨ (𝐴 − 1) ∈ ℕ))
3215, 30, 31mpjaod 396 1 (𝐴 ∈ ℕ → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1480  wcel 1987  [wsbc 3422  (class class class)co 6615  cc 9894  1c1 9897   + caddc 9899  cmin 10226  cn 10980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-er 7702  df-en 7916  df-dom 7917  df-sdom 7918  df-pnf 10036  df-mnf 10037  df-ltxr 10039  df-sub 10228  df-nn 10981
This theorem is referenced by:  opsqrlem6  28892
  Copyright terms: Public domain W3C validator