MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn1suc Structured version   Visualization version   GIF version

Theorem nn1suc 11231
Description: If a statement holds for 1 and also holds for a successor, it holds for all positive integers. The first three hypotheses give us the substitution instances we need; the last two show that it holds for 1 and for a successor. (Contributed by NM, 11-Oct-2004.) (Revised by Mario Carneiro, 16-May-2014.)
Hypotheses
Ref Expression
nn1suc.1 (𝑥 = 1 → (𝜑𝜓))
nn1suc.3 (𝑥 = (𝑦 + 1) → (𝜑𝜒))
nn1suc.4 (𝑥 = 𝐴 → (𝜑𝜃))
nn1suc.5 𝜓
nn1suc.6 (𝑦 ∈ ℕ → 𝜒)
Assertion
Ref Expression
nn1suc (𝐴 ∈ ℕ → 𝜃)
Distinct variable groups:   𝑥,𝑦,𝐴   𝜓,𝑥   𝜒,𝑥   𝜃,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)   𝜃(𝑦)

Proof of Theorem nn1suc
StepHypRef Expression
1 nn1suc.5 . . . . 5 𝜓
2 1ex 10225 . . . . . 6 1 ∈ V
3 nn1suc.1 . . . . . 6 (𝑥 = 1 → (𝜑𝜓))
42, 3sbcie 3609 . . . . 5 ([1 / 𝑥]𝜑𝜓)
51, 4mpbir 221 . . . 4 [1 / 𝑥]𝜑
6 1nn 11221 . . . . . . 7 1 ∈ ℕ
7 eleq1 2825 . . . . . . 7 (𝐴 = 1 → (𝐴 ∈ ℕ ↔ 1 ∈ ℕ))
86, 7mpbiri 248 . . . . . 6 (𝐴 = 1 → 𝐴 ∈ ℕ)
9 nn1suc.4 . . . . . . 7 (𝑥 = 𝐴 → (𝜑𝜃))
109sbcieg 3607 . . . . . 6 (𝐴 ∈ ℕ → ([𝐴 / 𝑥]𝜑𝜃))
118, 10syl 17 . . . . 5 (𝐴 = 1 → ([𝐴 / 𝑥]𝜑𝜃))
12 dfsbcq 3576 . . . . 5 (𝐴 = 1 → ([𝐴 / 𝑥]𝜑[1 / 𝑥]𝜑))
1311, 12bitr3d 270 . . . 4 (𝐴 = 1 → (𝜃[1 / 𝑥]𝜑))
145, 13mpbiri 248 . . 3 (𝐴 = 1 → 𝜃)
1514a1i 11 . 2 (𝐴 ∈ ℕ → (𝐴 = 1 → 𝜃))
16 ovex 6839 . . . . . 6 (𝑦 + 1) ∈ V
17 nn1suc.3 . . . . . 6 (𝑥 = (𝑦 + 1) → (𝜑𝜒))
1816, 17sbcie 3609 . . . . 5 ([(𝑦 + 1) / 𝑥]𝜑𝜒)
19 oveq1 6818 . . . . . 6 (𝑦 = (𝐴 − 1) → (𝑦 + 1) = ((𝐴 − 1) + 1))
2019sbceq1d 3579 . . . . 5 (𝑦 = (𝐴 − 1) → ([(𝑦 + 1) / 𝑥]𝜑[((𝐴 − 1) + 1) / 𝑥]𝜑))
2118, 20syl5bbr 274 . . . 4 (𝑦 = (𝐴 − 1) → (𝜒[((𝐴 − 1) + 1) / 𝑥]𝜑))
22 nn1suc.6 . . . 4 (𝑦 ∈ ℕ → 𝜒)
2321, 22vtoclga 3410 . . 3 ((𝐴 − 1) ∈ ℕ → [((𝐴 − 1) + 1) / 𝑥]𝜑)
24 nncn 11218 . . . . . 6 (𝐴 ∈ ℕ → 𝐴 ∈ ℂ)
25 ax-1cn 10184 . . . . . 6 1 ∈ ℂ
26 npcan 10480 . . . . . 6 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 − 1) + 1) = 𝐴)
2724, 25, 26sylancl 697 . . . . 5 (𝐴 ∈ ℕ → ((𝐴 − 1) + 1) = 𝐴)
2827sbceq1d 3579 . . . 4 (𝐴 ∈ ℕ → ([((𝐴 − 1) + 1) / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
2928, 10bitrd 268 . . 3 (𝐴 ∈ ℕ → ([((𝐴 − 1) + 1) / 𝑥]𝜑𝜃))
3023, 29syl5ib 234 . 2 (𝐴 ∈ ℕ → ((𝐴 − 1) ∈ ℕ → 𝜃))
31 nn1m1nn 11230 . 2 (𝐴 ∈ ℕ → (𝐴 = 1 ∨ (𝐴 − 1) ∈ ℕ))
3215, 30, 31mpjaod 395 1 (𝐴 ∈ ℕ → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1630  wcel 2137  [wsbc 3574  (class class class)co 6811  cc 10124  1c1 10127   + caddc 10129  cmin 10456  cn 11210
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1986  ax-6 2052  ax-7 2088  ax-8 2139  ax-9 2146  ax-10 2166  ax-11 2181  ax-12 2194  ax-13 2389  ax-ext 2738  ax-sep 4931  ax-nul 4939  ax-pow 4990  ax-pr 5053  ax-un 7112  ax-resscn 10183  ax-1cn 10184  ax-icn 10185  ax-addcl 10186  ax-addrcl 10187  ax-mulcl 10188  ax-mulrcl 10189  ax-mulcom 10190  ax-addass 10191  ax-mulass 10192  ax-distr 10193  ax-i2m1 10194  ax-1ne0 10195  ax-1rid 10196  ax-rnegex 10197  ax-rrecex 10198  ax-cnre 10199  ax-pre-lttri 10200  ax-pre-lttrn 10201  ax-pre-ltadd 10202
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2045  df-eu 2609  df-mo 2610  df-clab 2745  df-cleq 2751  df-clel 2754  df-nfc 2889  df-ne 2931  df-nel 3034  df-ral 3053  df-rex 3054  df-reu 3055  df-rab 3057  df-v 3340  df-sbc 3575  df-csb 3673  df-dif 3716  df-un 3718  df-in 3720  df-ss 3727  df-pss 3729  df-nul 4057  df-if 4229  df-pw 4302  df-sn 4320  df-pr 4322  df-tp 4324  df-op 4326  df-uni 4587  df-iun 4672  df-br 4803  df-opab 4863  df-mpt 4880  df-tr 4903  df-id 5172  df-eprel 5177  df-po 5185  df-so 5186  df-fr 5223  df-we 5225  df-xp 5270  df-rel 5271  df-cnv 5272  df-co 5273  df-dm 5274  df-rn 5275  df-res 5276  df-ima 5277  df-pred 5839  df-ord 5885  df-on 5886  df-lim 5887  df-suc 5888  df-iota 6010  df-fun 6049  df-fn 6050  df-f 6051  df-f1 6052  df-fo 6053  df-f1o 6054  df-fv 6055  df-riota 6772  df-ov 6814  df-oprab 6815  df-mpt2 6816  df-om 7229  df-wrecs 7574  df-recs 7635  df-rdg 7673  df-er 7909  df-en 8120  df-dom 8121  df-sdom 8122  df-pnf 10266  df-mnf 10267  df-ltxr 10269  df-sub 10458  df-nn 11211
This theorem is referenced by:  opsqrlem6  29311
  Copyright terms: Public domain W3C validator